Pobreza e diversidades regionais: uma investigação empírica para o Brasil, 2010
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFMG |
Texto Completo: | http://hdl.handle.net/1843/AMSA-97ZQAR |
Resumo: | The article studies relative household poverty in Brazilian municipalities of different socio-economic backgrounds. The study aims at understanding the role of regional disparities on poverty. The regional variables of interest are municipalities, while poverty is defined as households with per capita incomes below the 2nd decile of income distribution, which corresponds to R$ 195 (Brazilian reais), or 97 US$. The data is extracted from the Brazilian Census (IBGE 2010), The Brazilian Statistics of the Civil Registry (IBGE 2010) and from the study Regions of Influence of Cities (IBGE 2007). We use different methodologies as to ensure robustness of results. Firstly, we explore the data via descriptive analysis. We follow by using Ordinary Least Squares (OLS) with variance correction for the clusters and models of quantile regression. Lastly, we undertake variance analysis (ANOVA) and estimated hierarchical models. The methodology described above was usedwith two different specifications: with and without regional variables. The methodology was applied to subdivisions of income, the 20% poorest, the 20% richest and those between the 4th and the 6th decile of income. This enables comparative analysis between the tendencies of households defined as poor, those with per capita incomes close to the median, and those in the top two deciles of the national income distribution. The results show that the most deprived households are those headed by women, the relatively young, those classified as black or mixed race, single headed households, those with the lowest level of education, the unemployed, those relative large household size and those in rural areas. The relationship between income and regional characteristics was extremely relevant, with approximately 35% of variance of per capita income explained by inter-municipal differences. In the analysis of regional characteristics, we show that income has a strong positive correlation with the following municipal variables: percentage of inhabitants above 24 years of age with higher education, unemployment rate, percentage of informal workers, level of centrality and income inequality. |
id |
UFMG_2d2932154060f7fe34f2c85dd84d12ae |
---|---|
oai_identifier_str |
oai:repositorio.ufmg.br:1843/AMSA-97ZQAR |
network_acronym_str |
UFMG |
network_name_str |
Repositório Institucional da UFMG |
repository_id_str |
|
spelling |
Pobreza e diversidades regionais: uma investigação empírica para o Brasil, 2010Economia regionalMicroeconometriaPobrezaEconomia regionalMicroeconomiaPobrezaThe article studies relative household poverty in Brazilian municipalities of different socio-economic backgrounds. The study aims at understanding the role of regional disparities on poverty. The regional variables of interest are municipalities, while poverty is defined as households with per capita incomes below the 2nd decile of income distribution, which corresponds to R$ 195 (Brazilian reais), or 97 US$. The data is extracted from the Brazilian Census (IBGE 2010), The Brazilian Statistics of the Civil Registry (IBGE 2010) and from the study Regions of Influence of Cities (IBGE 2007). We use different methodologies as to ensure robustness of results. Firstly, we explore the data via descriptive analysis. We follow by using Ordinary Least Squares (OLS) with variance correction for the clusters and models of quantile regression. Lastly, we undertake variance analysis (ANOVA) and estimated hierarchical models. The methodology described above was usedwith two different specifications: with and without regional variables. The methodology was applied to subdivisions of income, the 20% poorest, the 20% richest and those between the 4th and the 6th decile of income. This enables comparative analysis between the tendencies of households defined as poor, those with per capita incomes close to the median, and those in the top two deciles of the national income distribution. The results show that the most deprived households are those headed by women, the relatively young, those classified as black or mixed race, single headed households, those with the lowest level of education, the unemployed, those relative large household size and those in rural areas. The relationship between income and regional characteristics was extremely relevant, with approximately 35% of variance of per capita income explained by inter-municipal differences. In the analysis of regional characteristics, we show that income has a strong positive correlation with the following municipal variables: percentage of inhabitants above 24 years of age with higher education, unemployment rate, percentage of informal workers, level of centrality and income inequality.Este trabalho realiza um estudo da pobreza relativa domiciliar nos municípios brasileiros para diferentes contextos sócio-econômicos, visando o entendimento do papel das dissimilaridades regionais sobre a pobreza. Como nível regional de interesse, são tomados os municípios e, como pobres, são considerados os domicílios com renda domiciliar per capita abaixo do segundo decil de renda em nível nacional, correspondente ao valor de 195 reais. São utilizados dados do Censo Demográfico (IBGE, 2010), das Estatísticas do Registro Civil (IBGE, 2010) e do estudo Regiões de Influência das Cidades (IBGE, 2007). Optou-se pela utilização de diferentes metodologias, a fim de assegurar a robustez dos resultados. Primeiramente, exploraram-se os dados via análise descritiva. Em seguida, utilizou-se de modelos de Mínimos Quadrados Ordinários com correção da variância para clusters e foram estimados modelos de regressão quantílica. Por último, fez-se uma análise de variância (ANOVA) e estimaram-se modelos hierárquicos. As metodologias descritas foram aplicadas, de modo geral, a duas especificações, com e sem variáveis locacionais, e a diferentes subdivisões das bases de dados segundo critério de renda, incluindo os 20% mais pobres, os 20% mais ricos e aqueles cuja renda encontra-se entre o quarto e o sexto decil de renda. Dessa forma, fez-se possível a análise comparativa de tendências associadas aos domicílios considerados pobres com aquelas associadas aos domicílios com renda per capita próxima à mediana e aos com renda per capita acima do oitavo decil da distribuição de renda nacional. Os resultados apontaram que estão mais sujeitos a privações domicílios com chefes do sexo feminino, mais jovens, de cor negra ou parda, sem acompanhantes ou cônjuges, com menor escolaridade ou desempregados, assim como domicílios com maior número de moradores ou localizados em áreas rurais. A relação entre renda e características regionais mostrou-se interessantemente relevante, com aproximadamente 35% da variância da renda domiciliar per capita explicada pelas diferenças intermunicipais. Quando da análise das características regionais, verificou-se que são forte e positivamente correlacionados com renda as seguintes variáveis municipais: percentual de moradores acima de 24 anos com ensino superior, taxa de desemprego, percentual de trabalhadores informais, nível de centralidade e desigualdade de renda.Universidade Federal de Minas GeraisUFMGAna Maria Hermeto Camilo de OliveiraAna Flavia MachadoRicardo da Silva FregugliaLaura de Carvalho Schiavon2019-08-10T11:36:55Z2019-08-10T11:36:55Z2013-02-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/1843/AMSA-97ZQARinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2019-11-14T10:18:27Zoai:repositorio.ufmg.br:1843/AMSA-97ZQARRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2019-11-14T10:18:27Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
dc.title.none.fl_str_mv |
Pobreza e diversidades regionais: uma investigação empírica para o Brasil, 2010 |
title |
Pobreza e diversidades regionais: uma investigação empírica para o Brasil, 2010 |
spellingShingle |
Pobreza e diversidades regionais: uma investigação empírica para o Brasil, 2010 Laura de Carvalho Schiavon Economia regional Microeconometria Pobreza Economia regional Microeconomia Pobreza |
title_short |
Pobreza e diversidades regionais: uma investigação empírica para o Brasil, 2010 |
title_full |
Pobreza e diversidades regionais: uma investigação empírica para o Brasil, 2010 |
title_fullStr |
Pobreza e diversidades regionais: uma investigação empírica para o Brasil, 2010 |
title_full_unstemmed |
Pobreza e diversidades regionais: uma investigação empírica para o Brasil, 2010 |
title_sort |
Pobreza e diversidades regionais: uma investigação empírica para o Brasil, 2010 |
author |
Laura de Carvalho Schiavon |
author_facet |
Laura de Carvalho Schiavon |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ana Maria Hermeto Camilo de Oliveira Ana Flavia Machado Ricardo da Silva Freguglia |
dc.contributor.author.fl_str_mv |
Laura de Carvalho Schiavon |
dc.subject.por.fl_str_mv |
Economia regional Microeconometria Pobreza Economia regional Microeconomia Pobreza |
topic |
Economia regional Microeconometria Pobreza Economia regional Microeconomia Pobreza |
description |
The article studies relative household poverty in Brazilian municipalities of different socio-economic backgrounds. The study aims at understanding the role of regional disparities on poverty. The regional variables of interest are municipalities, while poverty is defined as households with per capita incomes below the 2nd decile of income distribution, which corresponds to R$ 195 (Brazilian reais), or 97 US$. The data is extracted from the Brazilian Census (IBGE 2010), The Brazilian Statistics of the Civil Registry (IBGE 2010) and from the study Regions of Influence of Cities (IBGE 2007). We use different methodologies as to ensure robustness of results. Firstly, we explore the data via descriptive analysis. We follow by using Ordinary Least Squares (OLS) with variance correction for the clusters and models of quantile regression. Lastly, we undertake variance analysis (ANOVA) and estimated hierarchical models. The methodology described above was usedwith two different specifications: with and without regional variables. The methodology was applied to subdivisions of income, the 20% poorest, the 20% richest and those between the 4th and the 6th decile of income. This enables comparative analysis between the tendencies of households defined as poor, those with per capita incomes close to the median, and those in the top two deciles of the national income distribution. The results show that the most deprived households are those headed by women, the relatively young, those classified as black or mixed race, single headed households, those with the lowest level of education, the unemployed, those relative large household size and those in rural areas. The relationship between income and regional characteristics was extremely relevant, with approximately 35% of variance of per capita income explained by inter-municipal differences. In the analysis of regional characteristics, we show that income has a strong positive correlation with the following municipal variables: percentage of inhabitants above 24 years of age with higher education, unemployment rate, percentage of informal workers, level of centrality and income inequality. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-02-25 2019-08-10T11:36:55Z 2019-08-10T11:36:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1843/AMSA-97ZQAR |
url |
http://hdl.handle.net/1843/AMSA-97ZQAR |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais UFMG |
publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais UFMG |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
instname_str |
Universidade Federal de Minas Gerais (UFMG) |
instacron_str |
UFMG |
institution |
UFMG |
reponame_str |
Repositório Institucional da UFMG |
collection |
Repositório Institucional da UFMG |
repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
repository.mail.fl_str_mv |
repositorio@ufmg.br |
_version_ |
1816829641226190848 |