Estudo da microbiota associada a torres de resfriamento de uma refinaria de petróleo

Detalhes bibliográficos
Autor(a) principal: Gabriela de Melo Franco
Data de Publicação: 2013
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/BUBD-A58EQM
Resumo: Biofilmes são comunidades complexas de micro-organismos aderidos a superfícies. Sistemas de resfriamento de água fornecem um ambiente aquático ideal para a multiplicação dos micro-organismos, aumentando o risco da ocorrência de corrosão microbiologicamente induzida e o decréscimo da eficiência do resfriamento. Portanto, a avaliação de biofilmes em superfície de metal é essencial para compreender o processo de corrosão e desenvolver alternativas para reduzir esse problema. O presente estudo teve como objetivo comparar a formação de biofilme em superfícies de aço carbono, aço inoxidável e vidro. Esses materiais foram inseridos verticalmente em bacias de água de torres de resfriamento de uma refinaria de petróleo e removidos após diferentes intervalos de tempo para quantificar bactérias aeróbias heterotróficas totais, bactérias nitrificantes, bactérias oxidantes de ferro, Pseudomonas aeruginosa, bactérias redutoras de sulfato e fungos. Três cupons de aço inoxidável, biocupons de aço carbono e lâminas de vidro foram removidos da bacia, mergulhados em água destilada para a remoção de células não aderidas e transferidos para frascos contendo solução salina estéril. Os frascos foram submetidos a banho de ultrassom para remoção do biofilme. A suspensão resultante foi serialmente diluída e inoculada em meios de cultura para o isolamento dos micro-organismos mencionados. Amostras da água da torre também foram examinadas. Em conjunto, três cupons e lâminas foram utilizados para a verificação da biomassa seca do biofilme. Esses materiais foram lavados em água destilada e mergulhados em metanol para a fixação da microbiota aderida, secos em estufa, pesados em balança analítica, lavados, secos e pesados novamente. A população planctônica de BHT e P. aeruginosa variou entre 1,45x103 e 3,0x104 UFC/mL. As análises demonstraram que as contagens de BHT foram maiores na superfície de aço carbono, seguido por vidro e aço inoxidável. Os materiais foram rapidamente colonizados por micro-organismos (3 dias). Os biofilmes nas superfícies se tornaram estáveis no período de 21 dias, exceto para aço carbono, onde as populações microbianas alcançaram nível máximo aos 10 dias. Não houve crescimento de BRS, e as bactérias oxidantes de ferro e nitrificantes tiveram ocorrências pontuais e em baixos níveis. Os testes para biomassa mostraram crescimento da microbiota até o período de 7 dias para todos os materiais (0,0006g para lâminas e 0,0003g para cupons), decaindo nas amostras seguintes. Foi possível concluir que biofilmes não aderem da mesma forma em diferentes materiais, sendo necessário selecionar o material adequado para minimizar a possibilidade de desenvolvimento de biofilme associado ao sistema de torres de resfriamento e o desenvolvimento de metodologias mais simples para o monitoramento na indústria.
id UFMG_3af45cf4cbbad8032de4f5f0b4a4e6bb
oai_identifier_str oai:repositorio.ufmg.br:1843/BUBD-A58EQM
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Vera Lucia dos SantosGabriela de Melo Franco2019-08-11T05:20:58Z2019-08-11T05:20:58Z2013-02-18http://hdl.handle.net/1843/BUBD-A58EQMBiofilmes são comunidades complexas de micro-organismos aderidos a superfícies. Sistemas de resfriamento de água fornecem um ambiente aquático ideal para a multiplicação dos micro-organismos, aumentando o risco da ocorrência de corrosão microbiologicamente induzida e o decréscimo da eficiência do resfriamento. Portanto, a avaliação de biofilmes em superfície de metal é essencial para compreender o processo de corrosão e desenvolver alternativas para reduzir esse problema. O presente estudo teve como objetivo comparar a formação de biofilme em superfícies de aço carbono, aço inoxidável e vidro. Esses materiais foram inseridos verticalmente em bacias de água de torres de resfriamento de uma refinaria de petróleo e removidos após diferentes intervalos de tempo para quantificar bactérias aeróbias heterotróficas totais, bactérias nitrificantes, bactérias oxidantes de ferro, Pseudomonas aeruginosa, bactérias redutoras de sulfato e fungos. Três cupons de aço inoxidável, biocupons de aço carbono e lâminas de vidro foram removidos da bacia, mergulhados em água destilada para a remoção de células não aderidas e transferidos para frascos contendo solução salina estéril. Os frascos foram submetidos a banho de ultrassom para remoção do biofilme. A suspensão resultante foi serialmente diluída e inoculada em meios de cultura para o isolamento dos micro-organismos mencionados. Amostras da água da torre também foram examinadas. Em conjunto, três cupons e lâminas foram utilizados para a verificação da biomassa seca do biofilme. Esses materiais foram lavados em água destilada e mergulhados em metanol para a fixação da microbiota aderida, secos em estufa, pesados em balança analítica, lavados, secos e pesados novamente. A população planctônica de BHT e P. aeruginosa variou entre 1,45x103 e 3,0x104 UFC/mL. As análises demonstraram que as contagens de BHT foram maiores na superfície de aço carbono, seguido por vidro e aço inoxidável. Os materiais foram rapidamente colonizados por micro-organismos (3 dias). Os biofilmes nas superfícies se tornaram estáveis no período de 21 dias, exceto para aço carbono, onde as populações microbianas alcançaram nível máximo aos 10 dias. Não houve crescimento de BRS, e as bactérias oxidantes de ferro e nitrificantes tiveram ocorrências pontuais e em baixos níveis. Os testes para biomassa mostraram crescimento da microbiota até o período de 7 dias para todos os materiais (0,0006g para lâminas e 0,0003g para cupons), decaindo nas amostras seguintes. Foi possível concluir que biofilmes não aderem da mesma forma em diferentes materiais, sendo necessário selecionar o material adequado para minimizar a possibilidade de desenvolvimento de biofilme associado ao sistema de torres de resfriamento e o desenvolvimento de metodologias mais simples para o monitoramento na indústria.Biofilms are complex communities of microorganisms attached to surfaces. Cooling water systems provide ideal aquatic environment for the microorganism multiplication, increasing the risk of occurrence of microbiologically influenced corrosion, and decreasing the efficiency of a heat exchanger. Therefore, evaluation of biofilms on metal surfaces is essential to understand the corrosion process and to develop alternatives that will minimize this problem. The current study aimed to compare biofilm formation in carbon steel, stainless steel and glass surfaces. Those materials were inserted vertically into water basins in a cooling tower of a petroleum refinery, and removed after different time intervals to quantify total aerobic heterotrophic bacteria, nitrifying bacteria, iron bacteria, Pseudomonas aeruginosa, sulfate-reducing bacteria and fungi. Three stainless steel coupons, carbon steel bio coupons and glass slides were removed from the basin, dip-rinsed in distilled water to remove unattached cells and transferred into flaks containing sterile saline. The flasks were subjected to ultrasonic bath for biofilm removal. The resulting suspensions were serially diluted and inoculated culture media to isolate the microorganisms mentioned before. Samples of water from the water basins also were examined. Also, three coupons and glass slides were utilized to verify the dry biomass of the biofilm. Those materials were too dip-rinsed in distilled water to remove unattached cells and next in methanol to fix the cells, dried in a heater, weighed on an analytical balance, washed, dried and weighed again. The planktonic populations of AHB and P. aeruginosa varied between 1.45x103 and 3x104 CFU/mL. The analysis demonstrated that AHB counts were higher on the carbon steel surface, followed for glass and stainless steel. The materials were rapidly colonized by microorganisms (3 days) The biofilms on surfaces reached steady state at 21 days, except for carbon steel, where microbial populations reached maximum level at 10 days. There was no growth of SRB, and IB and NIT occurrence were punctual and at low levels. The biomass tests demonstrated maximum microbial growth at the 7th day to both materials (0.0006g to glass slides and 0.0003g to coupons), decreasing on the next samples. It could be concluded that biofilms do not attach in the same way in different materials, being necessary the selection of the suitable material to minimize the possibility of biofilm development associated with the operation of cooling tower systems and new methodologies simpler to be used in the industry.Universidade Federal de Minas GeraisUFMGMicrobiologiaCorrosãoBiofilmeBiocorrosãoBiomassa secaTorre de resfriamentoBiofilmeEstudo da microbiota associada a torres de resfriamento de uma refinaria de petróleoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALmonografia_gabriela_de_melo_franco.pdfapplication/pdf1405149https://repositorio.ufmg.br/bitstream/1843/BUBD-A58EQM/1/monografia_gabriela_de_melo_franco.pdf29fc151f29f8cbdb66aa45fe07d706b0MD51TEXTmonografia_gabriela_de_melo_franco.pdf.txtmonografia_gabriela_de_melo_franco.pdf.txtExtracted texttext/plain99816https://repositorio.ufmg.br/bitstream/1843/BUBD-A58EQM/2/monografia_gabriela_de_melo_franco.pdf.txt822d4fbea5442b6c382d23c3c60dc245MD521843/BUBD-A58EQM2019-11-14 03:45:41.162oai:repositorio.ufmg.br:1843/BUBD-A58EQMRepositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2019-11-14T06:45:41Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv Estudo da microbiota associada a torres de resfriamento de uma refinaria de petróleo
title Estudo da microbiota associada a torres de resfriamento de uma refinaria de petróleo
spellingShingle Estudo da microbiota associada a torres de resfriamento de uma refinaria de petróleo
Gabriela de Melo Franco
Biocorrosão
Biomassa seca
Torre de resfriamento
Biofilme
Microbiologia
Corrosão
Biofilme
title_short Estudo da microbiota associada a torres de resfriamento de uma refinaria de petróleo
title_full Estudo da microbiota associada a torres de resfriamento de uma refinaria de petróleo
title_fullStr Estudo da microbiota associada a torres de resfriamento de uma refinaria de petróleo
title_full_unstemmed Estudo da microbiota associada a torres de resfriamento de uma refinaria de petróleo
title_sort Estudo da microbiota associada a torres de resfriamento de uma refinaria de petróleo
author Gabriela de Melo Franco
author_facet Gabriela de Melo Franco
author_role author
dc.contributor.advisor1.fl_str_mv Vera Lucia dos Santos
dc.contributor.author.fl_str_mv Gabriela de Melo Franco
contributor_str_mv Vera Lucia dos Santos
dc.subject.por.fl_str_mv Biocorrosão
Biomassa seca
Torre de resfriamento
Biofilme
topic Biocorrosão
Biomassa seca
Torre de resfriamento
Biofilme
Microbiologia
Corrosão
Biofilme
dc.subject.other.pt_BR.fl_str_mv Microbiologia
Corrosão
Biofilme
description Biofilmes são comunidades complexas de micro-organismos aderidos a superfícies. Sistemas de resfriamento de água fornecem um ambiente aquático ideal para a multiplicação dos micro-organismos, aumentando o risco da ocorrência de corrosão microbiologicamente induzida e o decréscimo da eficiência do resfriamento. Portanto, a avaliação de biofilmes em superfície de metal é essencial para compreender o processo de corrosão e desenvolver alternativas para reduzir esse problema. O presente estudo teve como objetivo comparar a formação de biofilme em superfícies de aço carbono, aço inoxidável e vidro. Esses materiais foram inseridos verticalmente em bacias de água de torres de resfriamento de uma refinaria de petróleo e removidos após diferentes intervalos de tempo para quantificar bactérias aeróbias heterotróficas totais, bactérias nitrificantes, bactérias oxidantes de ferro, Pseudomonas aeruginosa, bactérias redutoras de sulfato e fungos. Três cupons de aço inoxidável, biocupons de aço carbono e lâminas de vidro foram removidos da bacia, mergulhados em água destilada para a remoção de células não aderidas e transferidos para frascos contendo solução salina estéril. Os frascos foram submetidos a banho de ultrassom para remoção do biofilme. A suspensão resultante foi serialmente diluída e inoculada em meios de cultura para o isolamento dos micro-organismos mencionados. Amostras da água da torre também foram examinadas. Em conjunto, três cupons e lâminas foram utilizados para a verificação da biomassa seca do biofilme. Esses materiais foram lavados em água destilada e mergulhados em metanol para a fixação da microbiota aderida, secos em estufa, pesados em balança analítica, lavados, secos e pesados novamente. A população planctônica de BHT e P. aeruginosa variou entre 1,45x103 e 3,0x104 UFC/mL. As análises demonstraram que as contagens de BHT foram maiores na superfície de aço carbono, seguido por vidro e aço inoxidável. Os materiais foram rapidamente colonizados por micro-organismos (3 dias). Os biofilmes nas superfícies se tornaram estáveis no período de 21 dias, exceto para aço carbono, onde as populações microbianas alcançaram nível máximo aos 10 dias. Não houve crescimento de BRS, e as bactérias oxidantes de ferro e nitrificantes tiveram ocorrências pontuais e em baixos níveis. Os testes para biomassa mostraram crescimento da microbiota até o período de 7 dias para todos os materiais (0,0006g para lâminas e 0,0003g para cupons), decaindo nas amostras seguintes. Foi possível concluir que biofilmes não aderem da mesma forma em diferentes materiais, sendo necessário selecionar o material adequado para minimizar a possibilidade de desenvolvimento de biofilme associado ao sistema de torres de resfriamento e o desenvolvimento de metodologias mais simples para o monitoramento na indústria.
publishDate 2013
dc.date.issued.fl_str_mv 2013-02-18
dc.date.accessioned.fl_str_mv 2019-08-11T05:20:58Z
dc.date.available.fl_str_mv 2019-08-11T05:20:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/BUBD-A58EQM
url http://hdl.handle.net/1843/BUBD-A58EQM
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.initials.fl_str_mv UFMG
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/BUBD-A58EQM/1/monografia_gabriela_de_melo_franco.pdf
https://repositorio.ufmg.br/bitstream/1843/BUBD-A58EQM/2/monografia_gabriela_de_melo_franco.pdf.txt
bitstream.checksum.fl_str_mv 29fc151f29f8cbdb66aa45fe07d706b0
822d4fbea5442b6c382d23c3c60dc245
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1803589574655475712