Spent fuel pool analysis for a pwr using different nuclear fuels

Detalhes bibliográficos
Autor(a) principal: Jéssica Achilles Pimentel
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/34293
Resumo: A spent fuel pool (SFP) of a typical Pressurized Water Reactor (PWR) was evaluated considering six types of fuels: standard PWR fuel, MOX, (Th-U)O2-16%, (Th-U)O2-19.5%, (TRU-Th)O2 and (TRU-U)O2 fuels. The following benchmarks: MOX and UO2 Phase IV-B Burn-up Credit Criticality Benchmark as well as Thorium Pin Cell Burnup Benchmark were validated using SCALE 6.0 code with KENO-VI transport code in the CSAS6 sequence. Then, the dimensions of the modeled fuel assembly from the benchmark were used to evaluate burnup and depletion studies. The six fuel assemblies were submitted to a burnup of 16 GWd/teHM with three operating cycles consisting of 420 days full power over 3.61 years. Considering the core refueling configuration, a supercell model was adopted to validate the MOX and UO2 fuels benchmark. The assemblies and supercells were irradiated in a PWR core and after irradiation, the fuel assemblies and supercells were inserted in the pool. Three different geometric arrangements considering the core refueling configuration for assemblies were designed into the pool. It was required to find the minimum pitch distance that would optimize the assemblies’ disposition in the SFP keeping the system under the upper criticality limit. Based on the criticality analyses, radioactivity, decay heat as well as inhalation and ingestion radiotoxicity were also studied over 50 years in the pool. After that, the delayed neutron fraction for each assembly and supercell were compared using the NEWT code. The kinf evolution and the delayed neutron fraction (DNF) for all fuels’ assemblies and supercells were evaluated during the burnup and compared with the standard UO2. It was shown that in no case the pool needed to be resized. The results also show that the DNF of the assemblies using reprocessed fuel is smaller than the standard fuel, which is due to the 239Pu presence and the 233U production, which contribute to the low values obtained for delayed fission neutron fraction. These lower values of DNF suggest that reactors fueled with (TRU-Th)O2 or (TRU-U)O2 assemblies are harder to control. In contrast, the use of UO2-supercells in combination with other types of fuels can provide the burnup extension especially when transuranic fuels are used.
id UFMG_3e9752a5258b82afc3cf2bd3baab7775
oai_identifier_str oai:repositorio.ufmg.br:1843/34293
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Maria Auxiliadora Fortini Velosohttp://lattes.cnpq.br/1449297203101166Claubia Pereira Bezerra LimaCarlos Eduardo Velasquez CabreiraGraiciany de Paula BarrosJean Anderson Dias Saloméhttp://lattes.cnpq.br/5172411150362091Jéssica Achilles Pimentel2020-10-21T20:34:22Z2020-10-21T20:34:22Z2019-08-26http://hdl.handle.net/1843/34293A spent fuel pool (SFP) of a typical Pressurized Water Reactor (PWR) was evaluated considering six types of fuels: standard PWR fuel, MOX, (Th-U)O2-16%, (Th-U)O2-19.5%, (TRU-Th)O2 and (TRU-U)O2 fuels. The following benchmarks: MOX and UO2 Phase IV-B Burn-up Credit Criticality Benchmark as well as Thorium Pin Cell Burnup Benchmark were validated using SCALE 6.0 code with KENO-VI transport code in the CSAS6 sequence. Then, the dimensions of the modeled fuel assembly from the benchmark were used to evaluate burnup and depletion studies. The six fuel assemblies were submitted to a burnup of 16 GWd/teHM with three operating cycles consisting of 420 days full power over 3.61 years. Considering the core refueling configuration, a supercell model was adopted to validate the MOX and UO2 fuels benchmark. The assemblies and supercells were irradiated in a PWR core and after irradiation, the fuel assemblies and supercells were inserted in the pool. Three different geometric arrangements considering the core refueling configuration for assemblies were designed into the pool. It was required to find the minimum pitch distance that would optimize the assemblies’ disposition in the SFP keeping the system under the upper criticality limit. Based on the criticality analyses, radioactivity, decay heat as well as inhalation and ingestion radiotoxicity were also studied over 50 years in the pool. After that, the delayed neutron fraction for each assembly and supercell were compared using the NEWT code. The kinf evolution and the delayed neutron fraction (DNF) for all fuels’ assemblies and supercells were evaluated during the burnup and compared with the standard UO2. It was shown that in no case the pool needed to be resized. The results also show that the DNF of the assemblies using reprocessed fuel is smaller than the standard fuel, which is due to the 239Pu presence and the 233U production, which contribute to the low values obtained for delayed fission neutron fraction. These lower values of DNF suggest that reactors fueled with (TRU-Th)O2 or (TRU-U)O2 assemblies are harder to control. In contrast, the use of UO2-supercells in combination with other types of fuels can provide the burnup extension especially when transuranic fuels are used.Uma piscina de combustível irradiado (SFP) de um reator de água pressurizada (PWR) foi avaliada considerando seis tipos de combustíveis: combustível padrão PWR, MOX, (Th-U)O2-16%, (ThU)O2-19,5%, (TRU-Th)O2 e (TRU-U)O2. Os seguintes benchmarks: Phase IV-B Burn-up Credit Criticality benchmark bem como o Thorium Pin Cell Burnup Benchmark foram validados usando o código SCALE 6.0 com código de transporte KENO-VI na sequência CSAS6. Em seguida, as dimensões do elemento combustível do benchmark foram usadas para avaliar os estudos de queima e evolução do combustível. Os seis elementos combustíveis foram submetidos a uma queima de 16 GWd/teHM com três ciclos de operação consistindo em 420 dias com potência total durante 3,61 anos. Considerando a configuração de recarga do núcleo, adotou-se um modelo de supercélula para validar o MOX e UO2 benchmark. As supercélulas também foram irradiadas em um núcleo PWR e após a irradiação, foram inseridas na piscina de combustível irradiado. Três diferentes arranjos geométricos que levam em consideração a configuração de recarga para os elementos combustíveis foram projetados dentro da piscina. Foi necessário encontrar a distância mínima (pitch) que otimizaria a disposição dos elementos na piscina, mantendo o sistema sob o limite superior de criticalidade. Com base nas análises de criticalidade, a radioatividade, o calor de decaimento, bem como a radiotoxicidade por inalação e por ingestão também foram estudados ao longo de 50 anos dentro da piscina. Depois disso, a fração de nêutrons atrasados de cada elemento combustível e supercélula foi estudada usando o código NEWT e comparada com o combustível padrão UO2. Foi demonstrado que, em nenhum caso, a piscina precisaria ser redimensionada. Os resultados mostram ainda que a fração de nêutrons atrasados (DNF) dos elementos combustíveis que usam material reprocessado é menor que o combustível padrão, o que se deve à presença de 239Pu e à produção de 233U, contribuindo para os baixos valores obtidos para a fração de nêutrons atrasados. Esses valores mais baixos de DNF sugerem que os reatores que utilizam elementos combustíveis de (TRU-Th)O2 ou (TRU-U)O2 são mais difíceis de serem controlados. Em contraste, o uso das supercélulas de UO2 juntamente com outros tipos de combustíveis favorece a extensão da queima, principalmente quando combustíveis transurânicos são utilizados, viabilizando assim o uso dos mesmos no núcleo do PWR.FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisengUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em Ciências e Técnicas NuclearesUFMGBrasilENG - DEPARTAMENTO DE ENGENHARIA NUCLEAREngenharia nuclearCombustíveis nuclearesCriticalidade (Engenharia nuclear)RadioatividadeReatores de água pressurizadaTórioReprocessed fuelSpent fuel poolCriticality calculationMultiplication factorDecay heatRadioactivityInhalation radiotoxicityIngestion radiotoxicitySupercellDelayed neutron fractionNuclear reactor safety parametersSpent fuel pool analysis for a pwr using different nuclear fuelsPiscina de armazenamento para reator PWR com diferentes combustíveis nuclearesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALFinal Master Thesis PDF.pdfFinal Master Thesis PDF.pdfapplication/pdf1500322https://repositorio.ufmg.br/bitstream/1843/34293/1/Final%20Master%20Thesis%20PDF.pdfb81c573a4ce8a1927eb426b9a5bd99b6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82119https://repositorio.ufmg.br/bitstream/1843/34293/2/license.txt34badce4be7e31e3adb4575ae96af679MD521843/342932020-10-21 17:34:22.628oai:repositorio.ufmg.br:1843/34293TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KCg==Repositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2020-10-21T20:34:22Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv Spent fuel pool analysis for a pwr using different nuclear fuels
dc.title.alternative.pt_BR.fl_str_mv Piscina de armazenamento para reator PWR com diferentes combustíveis nucleares
title Spent fuel pool analysis for a pwr using different nuclear fuels
spellingShingle Spent fuel pool analysis for a pwr using different nuclear fuels
Jéssica Achilles Pimentel
Reprocessed fuel
Spent fuel pool
Criticality calculation
Multiplication factor
Decay heat
Radioactivity
Inhalation radiotoxicity
Ingestion radiotoxicity
Supercell
Delayed neutron fraction
Nuclear reactor safety parameters
Engenharia nuclear
Combustíveis nucleares
Criticalidade (Engenharia nuclear)
Radioatividade
Reatores de água pressurizada
Tório
title_short Spent fuel pool analysis for a pwr using different nuclear fuels
title_full Spent fuel pool analysis for a pwr using different nuclear fuels
title_fullStr Spent fuel pool analysis for a pwr using different nuclear fuels
title_full_unstemmed Spent fuel pool analysis for a pwr using different nuclear fuels
title_sort Spent fuel pool analysis for a pwr using different nuclear fuels
author Jéssica Achilles Pimentel
author_facet Jéssica Achilles Pimentel
author_role author
dc.contributor.advisor1.fl_str_mv Maria Auxiliadora Fortini Veloso
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1449297203101166
dc.contributor.advisor-co1.fl_str_mv Claubia Pereira Bezerra Lima
dc.contributor.referee1.fl_str_mv Carlos Eduardo Velasquez Cabreira
dc.contributor.referee2.fl_str_mv Graiciany de Paula Barros
dc.contributor.referee3.fl_str_mv Jean Anderson Dias Salomé
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5172411150362091
dc.contributor.author.fl_str_mv Jéssica Achilles Pimentel
contributor_str_mv Maria Auxiliadora Fortini Veloso
Claubia Pereira Bezerra Lima
Carlos Eduardo Velasquez Cabreira
Graiciany de Paula Barros
Jean Anderson Dias Salomé
dc.subject.por.fl_str_mv Reprocessed fuel
Spent fuel pool
Criticality calculation
Multiplication factor
Decay heat
Radioactivity
Inhalation radiotoxicity
Ingestion radiotoxicity
Supercell
Delayed neutron fraction
Nuclear reactor safety parameters
topic Reprocessed fuel
Spent fuel pool
Criticality calculation
Multiplication factor
Decay heat
Radioactivity
Inhalation radiotoxicity
Ingestion radiotoxicity
Supercell
Delayed neutron fraction
Nuclear reactor safety parameters
Engenharia nuclear
Combustíveis nucleares
Criticalidade (Engenharia nuclear)
Radioatividade
Reatores de água pressurizada
Tório
dc.subject.other.pt_BR.fl_str_mv Engenharia nuclear
Combustíveis nucleares
Criticalidade (Engenharia nuclear)
Radioatividade
Reatores de água pressurizada
Tório
description A spent fuel pool (SFP) of a typical Pressurized Water Reactor (PWR) was evaluated considering six types of fuels: standard PWR fuel, MOX, (Th-U)O2-16%, (Th-U)O2-19.5%, (TRU-Th)O2 and (TRU-U)O2 fuels. The following benchmarks: MOX and UO2 Phase IV-B Burn-up Credit Criticality Benchmark as well as Thorium Pin Cell Burnup Benchmark were validated using SCALE 6.0 code with KENO-VI transport code in the CSAS6 sequence. Then, the dimensions of the modeled fuel assembly from the benchmark were used to evaluate burnup and depletion studies. The six fuel assemblies were submitted to a burnup of 16 GWd/teHM with three operating cycles consisting of 420 days full power over 3.61 years. Considering the core refueling configuration, a supercell model was adopted to validate the MOX and UO2 fuels benchmark. The assemblies and supercells were irradiated in a PWR core and after irradiation, the fuel assemblies and supercells were inserted in the pool. Three different geometric arrangements considering the core refueling configuration for assemblies were designed into the pool. It was required to find the minimum pitch distance that would optimize the assemblies’ disposition in the SFP keeping the system under the upper criticality limit. Based on the criticality analyses, radioactivity, decay heat as well as inhalation and ingestion radiotoxicity were also studied over 50 years in the pool. After that, the delayed neutron fraction for each assembly and supercell were compared using the NEWT code. The kinf evolution and the delayed neutron fraction (DNF) for all fuels’ assemblies and supercells were evaluated during the burnup and compared with the standard UO2. It was shown that in no case the pool needed to be resized. The results also show that the DNF of the assemblies using reprocessed fuel is smaller than the standard fuel, which is due to the 239Pu presence and the 233U production, which contribute to the low values obtained for delayed fission neutron fraction. These lower values of DNF suggest that reactors fueled with (TRU-Th)O2 or (TRU-U)O2 assemblies are harder to control. In contrast, the use of UO2-supercells in combination with other types of fuels can provide the burnup extension especially when transuranic fuels are used.
publishDate 2019
dc.date.issued.fl_str_mv 2019-08-26
dc.date.accessioned.fl_str_mv 2020-10-21T20:34:22Z
dc.date.available.fl_str_mv 2020-10-21T20:34:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/34293
url http://hdl.handle.net/1843/34293
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências e Técnicas Nucleares
dc.publisher.initials.fl_str_mv UFMG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ENG - DEPARTAMENTO DE ENGENHARIA NUCLEAR
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/34293/1/Final%20Master%20Thesis%20PDF.pdf
https://repositorio.ufmg.br/bitstream/1843/34293/2/license.txt
bitstream.checksum.fl_str_mv b81c573a4ce8a1927eb426b9a5bd99b6
34badce4be7e31e3adb4575ae96af679
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1803589289265594368