Thermodynamic analysis of a novel trigeneration process of hydrogen, electricity and desalinated water: the case of Na-O-H cycle, GEN-IV nuclear reactors and MED installation

Detalhes bibliográficos
Autor(a) principal: João Gabriel de Oliveira Marques
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/37960
https://orcid.org/0000-0001-7516-610X
Resumo: Hydrogen (H2) is a substance with a wide range of important applications like NH3 production. H2 can be obtained according to different processes, including the Na-O-H (sodium-oxygen-hydrogen) thermochemical cycle that breaks water through cyclic chemical reactions sustained by a heat source at specified temperature levels. In this context, GEN-IV (Generation IV) nuclear reactors are suitable energy options for these kind of processes because they are designed to provide electricity together with high temperature applications. At the same time, water could be get by means of MED (Multi-Effect Distillation), a desalination method that harvest waste heat from thermal systems to get fresh water from saline one. Then, H2 production from Na-O-H cycle through the heat supplied by GEN-IV reactors coupled to a MED unit enables the trigeneration of electricity, H2 and H2O, three important goods for society. Therefore, the first main aim of this thesis is to evaluate the thermal performance of this trigeneration process, a new one, considering three 1000 MWth GEN-IV technologies as the heat sources for both Na-O-H cycle plus a MED installation. This goal is developed by implementing mass, energy, entropy and exergy balances in the Engineering Equation Solver (EES) software to determine the amount of H2, electricity and desalinated H2O acquired. Consonant with preliminary results, this trigeneration process has potential to produce around 5 kg/s of H2, 400 MWe and 800 kg/s of H2O. These are theoretical and maximized values in function of all simplifications considered in the research. In the second main aim is investigated if there are other variations (b, c, d and e) of the Na-O-H cycle that have higher thermal performance when compared to its classic form, variation (a), evaluated in the first maim objective. According to the results, variation (e) has energy efficiency around 77% while variation (a) has energy efficiency near 52%. In the third main aim is established the thermodynamic limits (the minimum requirements of enthalpy change and other thermodynamic parameters) for thermochemical water splitting cycles starting from systems similar to the Na-O-H cycle. The results showed that all thermochemical cycles must have enthalpy change superior to 283.83 kJ to produce 1 mol of H2 gas. As it is being demonstrated in this study, it is possible to conclude that the trigeneration process of H2, water and electricity has potential to attempt the demand for such goods through more research and development of the systems analyzed.
id UFMG_41f7e58f48f43c59f655c60c19106296
oai_identifier_str oai:repositorio.ufmg.br:1843/37960
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Antonella Lombardi Costahttp://lattes.cnpq.br/0382135664206404Claubia Pereira Bezerra LimaRafaella Martins Ribeiro.Paulo Eduardo Lopes BarbieriAndré Guimarães FerreiraÂngela Fortini Macedo Ferreirahttp://lattes.cnpq.br/9958204882238983João Gabriel de Oliveira Marques2021-09-09T17:58:15Z2021-09-09T17:58:15Z2021-06-18http://hdl.handle.net/1843/37960https://orcid.org/0000-0001-7516-610XHydrogen (H2) is a substance with a wide range of important applications like NH3 production. H2 can be obtained according to different processes, including the Na-O-H (sodium-oxygen-hydrogen) thermochemical cycle that breaks water through cyclic chemical reactions sustained by a heat source at specified temperature levels. In this context, GEN-IV (Generation IV) nuclear reactors are suitable energy options for these kind of processes because they are designed to provide electricity together with high temperature applications. At the same time, water could be get by means of MED (Multi-Effect Distillation), a desalination method that harvest waste heat from thermal systems to get fresh water from saline one. Then, H2 production from Na-O-H cycle through the heat supplied by GEN-IV reactors coupled to a MED unit enables the trigeneration of electricity, H2 and H2O, three important goods for society. Therefore, the first main aim of this thesis is to evaluate the thermal performance of this trigeneration process, a new one, considering three 1000 MWth GEN-IV technologies as the heat sources for both Na-O-H cycle plus a MED installation. This goal is developed by implementing mass, energy, entropy and exergy balances in the Engineering Equation Solver (EES) software to determine the amount of H2, electricity and desalinated H2O acquired. Consonant with preliminary results, this trigeneration process has potential to produce around 5 kg/s of H2, 400 MWe and 800 kg/s of H2O. These are theoretical and maximized values in function of all simplifications considered in the research. In the second main aim is investigated if there are other variations (b, c, d and e) of the Na-O-H cycle that have higher thermal performance when compared to its classic form, variation (a), evaluated in the first maim objective. According to the results, variation (e) has energy efficiency around 77% while variation (a) has energy efficiency near 52%. In the third main aim is established the thermodynamic limits (the minimum requirements of enthalpy change and other thermodynamic parameters) for thermochemical water splitting cycles starting from systems similar to the Na-O-H cycle. The results showed that all thermochemical cycles must have enthalpy change superior to 283.83 kJ to produce 1 mol of H2 gas. As it is being demonstrated in this study, it is possible to conclude that the trigeneration process of H2, water and electricity has potential to attempt the demand for such goods through more research and development of the systems analyzed.O hidrogênio (H2) é uma substância com uma ampla gama de aplicações. Ele pode ser obtido de acordo com diferentes processos, incluindo o ciclo termoquímico Na-O-H (sódio-oxigênio-hidrogênio) que quebra moléculas de água por meio de reações químicas cíclicas sustentadas por uma fonte de calor. Nesse contexto, os reatores nucleares de quarta geração (GEN-IV) são opções energéticas adequadas para atender a esse tipo de processos, pois são projetados para fornecer eletricidade em conjunto com aplicações que demandam altas temperaturas. Ao mesmo tempo, água potável poderia ser obtida por meio do processo de dessalinização MED (Multi-Effect Distillation) que reutiliza o calor residual de sistemas térmicos. Ainda, a produção de H2 a partir do ciclo Na-O-H através do calor fornecido por reatores GEN-IV acoplados a uma unidade MED possibilita a trigeração de eletricidade, H2 e H2O, três importantes insumos para a sociedade. Então, o primeiro objetivo principal desta tese é avaliar o desempenho térmico de um novo processo de trigeração, considerando três tecnologias GEN-IV de 1000 MW como fontes de calor para o ciclo Na-O-H e instalação MED. Este objetivo é desenvolvido através da implementação de balanços de massa, energia, entropia e exergia no software Engineering Equation Solver (EES) para determinar a quantidade desses três insumos. De acordo com os resultados, o processo avaliado tem potencial para produzir cerca de 5 kg/s de H2, 400 MW de eletricidade e 800 kg/s de água. Tais valores obtidos são teóricos e maximizados em função de todas as simplificações consideradas na pesquisa. No segundo objetivo principal é investigado se existem outras variações (b, c, d ou e) do ciclo Na-O-H que apresentam desempenho térmico superior à forma clássica desse sistema, variação (a), avaliada no primeiro objetivo. Os resultados indicaram que a variação (e) apresenta eficiência energética de aproximadamente 77% enquanto a variação (a) apresenta eficiência próxima de 52%. No terceiro objetivo principal são estabelecidos os limites termodinâmicos para ciclos termoquímicos partir de sistemas semelhantes ao Na-O-H. Os resultados mostraram que todos os ciclos termoquímicos devem ter variação de entalpia superior a 283,83 kJ para produzir 1 mol de H2. Finalmente, concluiu-se que o processo de trigeração de H2, água e eletricidade avaliado no trabalho tem potencial para atender a demanda por tais insumos pelo desenvolvimento futuro dos sistemas analisados.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorengUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em Ciências e Técnicas NuclearesUFMGBrasilENG - DEPARTAMENTO DE ENGENHARIA NUCLEARhttp://creativecommons.org/licenses/by-nc-sa/3.0/pt/info:eu-repo/semantics/openAccessEngenharia nuclearReatores nuclearesDessalinização da águaEletricidadeTrigeneration of H2, electricity and desalinated waterNa-O-H thermochemical cycleGEN-IV nuclear reactorsMED desalinationThermal performanceEES softwareThermodynamic analysis of a novel trigeneration process of hydrogen, electricity and desalinated water: the case of Na-O-H cycle, GEN-IV nuclear reactors and MED installationAnálise termodinâmica de um novo processo de trigeração de hidrogênio, eletricidade e água dessalinizada: o caso do ciclo Na-O-H, reatores nucleares de quarta geração e instalação MEDinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALTHERMODYNAMIC ANALYSIS OF A NOVEL TRIGENERATION PROCESS OF HYDROGEN, ELECTRICITY AND DESALINATED WATER - THE CASE OF Na-O-H CYCLE, GEN-IV NUCLEAR REACTORS AND MED INSTALLATION (1).pdfTHERMODYNAMIC ANALYSIS OF A NOVEL TRIGENERATION PROCESS OF HYDROGEN, ELECTRICITY AND DESALINATED WATER - THE CASE OF Na-O-H CYCLE, GEN-IV NUCLEAR REACTORS AND MED INSTALLATION (1).pdfapplication/pdf20020490https://repositorio.ufmg.br/bitstream/1843/37960/4/THERMODYNAMIC%20ANALYSIS%20OF%20A%20NOVEL%20TRIGENERATION%20PROCESS%20OF%20HYDROGEN%2c%20ELECTRICITY%20AND%20DESALINATED%20WATER%20-%20THE%20CASE%20OF%20Na-O-H%20CYCLE%2c%20GEN-IV%20NUCLEAR%20REACTORS%20AND%20MED%20INSTALLATION%20%281%29.pdf7218e8c85c38496c4b2a7798e139346fMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ufmg.br/bitstream/1843/37960/5/license_rdfd434b2e45b27c6ef831461f4412a9d4eMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82118https://repositorio.ufmg.br/bitstream/1843/37960/6/license.txtcda590c95a0b51b4d15f60c9642ca272MD561843/379602021-09-09 14:58:15.724oai:repositorio.ufmg.br:1843/37960TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2021-09-09T17:58:15Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv Thermodynamic analysis of a novel trigeneration process of hydrogen, electricity and desalinated water: the case of Na-O-H cycle, GEN-IV nuclear reactors and MED installation
dc.title.alternative.pt_BR.fl_str_mv Análise termodinâmica de um novo processo de trigeração de hidrogênio, eletricidade e água dessalinizada: o caso do ciclo Na-O-H, reatores nucleares de quarta geração e instalação MED
title Thermodynamic analysis of a novel trigeneration process of hydrogen, electricity and desalinated water: the case of Na-O-H cycle, GEN-IV nuclear reactors and MED installation
spellingShingle Thermodynamic analysis of a novel trigeneration process of hydrogen, electricity and desalinated water: the case of Na-O-H cycle, GEN-IV nuclear reactors and MED installation
João Gabriel de Oliveira Marques
Trigeneration of H2, electricity and desalinated water
Na-O-H thermochemical cycle
GEN-IV nuclear reactors
MED desalination
Thermal performance
EES software
Engenharia nuclear
Reatores nucleares
Dessalinização da água
Eletricidade
title_short Thermodynamic analysis of a novel trigeneration process of hydrogen, electricity and desalinated water: the case of Na-O-H cycle, GEN-IV nuclear reactors and MED installation
title_full Thermodynamic analysis of a novel trigeneration process of hydrogen, electricity and desalinated water: the case of Na-O-H cycle, GEN-IV nuclear reactors and MED installation
title_fullStr Thermodynamic analysis of a novel trigeneration process of hydrogen, electricity and desalinated water: the case of Na-O-H cycle, GEN-IV nuclear reactors and MED installation
title_full_unstemmed Thermodynamic analysis of a novel trigeneration process of hydrogen, electricity and desalinated water: the case of Na-O-H cycle, GEN-IV nuclear reactors and MED installation
title_sort Thermodynamic analysis of a novel trigeneration process of hydrogen, electricity and desalinated water: the case of Na-O-H cycle, GEN-IV nuclear reactors and MED installation
author João Gabriel de Oliveira Marques
author_facet João Gabriel de Oliveira Marques
author_role author
dc.contributor.advisor1.fl_str_mv Antonella Lombardi Costa
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0382135664206404
dc.contributor.advisor-co1.fl_str_mv Claubia Pereira Bezerra Lima
dc.contributor.referee1.fl_str_mv Rafaella Martins Ribeiro.
dc.contributor.referee2.fl_str_mv Paulo Eduardo Lopes Barbieri
dc.contributor.referee3.fl_str_mv André Guimarães Ferreira
dc.contributor.referee4.fl_str_mv Ângela Fortini Macedo Ferreira
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/9958204882238983
dc.contributor.author.fl_str_mv João Gabriel de Oliveira Marques
contributor_str_mv Antonella Lombardi Costa
Claubia Pereira Bezerra Lima
Rafaella Martins Ribeiro.
Paulo Eduardo Lopes Barbieri
André Guimarães Ferreira
Ângela Fortini Macedo Ferreira
dc.subject.por.fl_str_mv Trigeneration of H2, electricity and desalinated water
Na-O-H thermochemical cycle
GEN-IV nuclear reactors
MED desalination
Thermal performance
EES software
topic Trigeneration of H2, electricity and desalinated water
Na-O-H thermochemical cycle
GEN-IV nuclear reactors
MED desalination
Thermal performance
EES software
Engenharia nuclear
Reatores nucleares
Dessalinização da água
Eletricidade
dc.subject.other.pt_BR.fl_str_mv Engenharia nuclear
Reatores nucleares
Dessalinização da água
Eletricidade
description Hydrogen (H2) is a substance with a wide range of important applications like NH3 production. H2 can be obtained according to different processes, including the Na-O-H (sodium-oxygen-hydrogen) thermochemical cycle that breaks water through cyclic chemical reactions sustained by a heat source at specified temperature levels. In this context, GEN-IV (Generation IV) nuclear reactors are suitable energy options for these kind of processes because they are designed to provide electricity together with high temperature applications. At the same time, water could be get by means of MED (Multi-Effect Distillation), a desalination method that harvest waste heat from thermal systems to get fresh water from saline one. Then, H2 production from Na-O-H cycle through the heat supplied by GEN-IV reactors coupled to a MED unit enables the trigeneration of electricity, H2 and H2O, three important goods for society. Therefore, the first main aim of this thesis is to evaluate the thermal performance of this trigeneration process, a new one, considering three 1000 MWth GEN-IV technologies as the heat sources for both Na-O-H cycle plus a MED installation. This goal is developed by implementing mass, energy, entropy and exergy balances in the Engineering Equation Solver (EES) software to determine the amount of H2, electricity and desalinated H2O acquired. Consonant with preliminary results, this trigeneration process has potential to produce around 5 kg/s of H2, 400 MWe and 800 kg/s of H2O. These are theoretical and maximized values in function of all simplifications considered in the research. In the second main aim is investigated if there are other variations (b, c, d and e) of the Na-O-H cycle that have higher thermal performance when compared to its classic form, variation (a), evaluated in the first maim objective. According to the results, variation (e) has energy efficiency around 77% while variation (a) has energy efficiency near 52%. In the third main aim is established the thermodynamic limits (the minimum requirements of enthalpy change and other thermodynamic parameters) for thermochemical water splitting cycles starting from systems similar to the Na-O-H cycle. The results showed that all thermochemical cycles must have enthalpy change superior to 283.83 kJ to produce 1 mol of H2 gas. As it is being demonstrated in this study, it is possible to conclude that the trigeneration process of H2, water and electricity has potential to attempt the demand for such goods through more research and development of the systems analyzed.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-09-09T17:58:15Z
dc.date.available.fl_str_mv 2021-09-09T17:58:15Z
dc.date.issued.fl_str_mv 2021-06-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/37960
dc.identifier.orcid.pt_BR.fl_str_mv https://orcid.org/0000-0001-7516-610X
url http://hdl.handle.net/1843/37960
https://orcid.org/0000-0001-7516-610X
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/3.0/pt/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/3.0/pt/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências e Técnicas Nucleares
dc.publisher.initials.fl_str_mv UFMG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ENG - DEPARTAMENTO DE ENGENHARIA NUCLEAR
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/37960/4/THERMODYNAMIC%20ANALYSIS%20OF%20A%20NOVEL%20TRIGENERATION%20PROCESS%20OF%20HYDROGEN%2c%20ELECTRICITY%20AND%20DESALINATED%20WATER%20-%20THE%20CASE%20OF%20Na-O-H%20CYCLE%2c%20GEN-IV%20NUCLEAR%20REACTORS%20AND%20MED%20INSTALLATION%20%281%29.pdf
https://repositorio.ufmg.br/bitstream/1843/37960/5/license_rdf
https://repositorio.ufmg.br/bitstream/1843/37960/6/license.txt
bitstream.checksum.fl_str_mv 7218e8c85c38496c4b2a7798e139346f
d434b2e45b27c6ef831461f4412a9d4e
cda590c95a0b51b4d15f60c9642ca272
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1803589566451417088