Rolled-up quantum wells composed of nanolayered InGaAs/GaAs heterostructures as optical materials for quantum information technology

Detalhes bibliográficos
Autor(a) principal: Leonarde do Nascimento Rodrigues
Data de Publicação: 2021
Outros Autores: Lucas da Conceição, Ângelo Malachias de Souza, Odilon Divino Damasceno Couto Júnior, Fernando Iikawa, Christoph Friedrich Deneke, Diego Scolfaro da Silva
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFMG
Texto Completo: https://doi.org/10.1021/acsanm.1c00354
http://hdl.handle.net/1843/52585
https://orcid.org/0000-0002-8703-4283
https://orcid.org/0000-0002-8416-3805
https://orcid.org/0000-0002-0865-7379
https://orcid.org/0000-0002-8556-386X
https://orcid.org/0000-0003-1127-4990
Resumo: Strain-based band structure engineering is a powerful tool to tune the optical and electronic properties of semiconductor nanostructures. We show that we can tune the band structure of InGaAs semiconductor quantum wells and modify the helicity of the emitted light by integrating them into rolled-up heterostructures and changing their geometrical configuration. Experimental results from photoluminescence and photoluminescence excitation spectroscopy demonstrate a strong energy shift of the valence-band states in comparison to flat structures, as a consequence of an inversion of the heavy-hole with the light-hole states in a rolled-up InGaAs quantum well. The inversion and mixing of the band states lead to a strong change in the optical selection rules for the rolled-up quantum wells, which show vanishing spin polarization in the conduction band even under near-resonant excitation conditions. Band structure calculations are carried out to understand the changes in the electronic transitions and to predict the emission and absorption spectra for a given geometrical configuration. Comparison between experiment and theory shows an excellent agreement. These observed profound changes in the fundamental properties can be applied as a strategic route to develop novel optical devices for quantum information technology.
id UFMG_4754dd24e62c9f57b27301a4a3b0bff5
oai_identifier_str oai:repositorio.ufmg.br:1843/52585
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling 2023-04-27T16:04:59Z2023-04-27T16:04:59Z20214331403147https://doi.org/10.1021/acsanm.1c003542574-0970http://hdl.handle.net/1843/52585https://orcid.org/0000-0002-8703-4283https://orcid.org/0000-0002-8416-3805https://orcid.org/0000-0002-0865-7379https://orcid.org/0000-0002-8556-386Xhttps://orcid.org/0000-0003-1127-4990Strain-based band structure engineering is a powerful tool to tune the optical and electronic properties of semiconductor nanostructures. We show that we can tune the band structure of InGaAs semiconductor quantum wells and modify the helicity of the emitted light by integrating them into rolled-up heterostructures and changing their geometrical configuration. Experimental results from photoluminescence and photoluminescence excitation spectroscopy demonstrate a strong energy shift of the valence-band states in comparison to flat structures, as a consequence of an inversion of the heavy-hole with the light-hole states in a rolled-up InGaAs quantum well. The inversion and mixing of the band states lead to a strong change in the optical selection rules for the rolled-up quantum wells, which show vanishing spin polarization in the conduction band even under near-resonant excitation conditions. Band structure calculations are carried out to understand the changes in the electronic transitions and to predict the emission and absorption spectra for a given geometrical configuration. Comparison between experiment and theory shows an excellent agreement. These observed profound changes in the fundamental properties can be applied as a strategic route to develop novel optical devices for quantum information technology.engUniversidade Federal de Minas GeraisUFMGBrasilICX - DEPARTAMENTO DE FÍSICAACS Applied Nano MaterialsMicrotubosSemicondutoresInformação quânticaBand structure inversionSemiconductor quantum wellOptical selection rulesRolled-up microtubesTensile and compressive hybrid stateCurved semiconductor membraneRolled-up quantum wells composed of nanolayered InGaAs/GaAs heterostructures as optical materials for quantum information technologyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://pubs.acs.org/doi/10.1021/acsanm.1c00354Leonarde do Nascimento RodriguesLucas da ConceiçãoÂngelo Malachias de SouzaOdilon Divino Damasceno Couto JúniorFernando IikawaChristoph Friedrich DenekeDiego Scolfaro da Silvaapplication/pdfinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGLICENSELicense.txtLicense.txttext/plain; charset=utf-82042https://repositorio.ufmg.br/bitstream/1843/52585/1/License.txtfa505098d172de0bc8864fc1287ffe22MD51ORIGINALRolled-Up Quantum Wells Composed of Nanolayered InGaAs GaAs.pdfRolled-Up Quantum Wells Composed of Nanolayered InGaAs GaAs.pdfapplication/pdf3298760https://repositorio.ufmg.br/bitstream/1843/52585/2/Rolled-Up%20Quantum%20Wells%20Composed%20of%20Nanolayered%20InGaAs%20GaAs.pdf48f120ed54d845470fbb760ed5a5fcbfMD521843/525852023-04-27 16:19:35.593oai:repositorio.ufmg.br:1843/52585TElDRU7vv71BIERFIERJU1RSSUJVSe+/ve+/vU8gTu+/vU8tRVhDTFVTSVZBIERPIFJFUE9TSVTvv71SSU8gSU5TVElUVUNJT05BTCBEQSBVRk1HCiAKCkNvbSBhIGFwcmVzZW50Ye+/ve+/vW8gZGVzdGEgbGljZW7vv71hLCB2b2Pvv70gKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlIGFvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbu+/vW8gZXhjbHVzaXZvIGUgaXJyZXZvZ++/vXZlbCBkZSByZXByb2R1emlyIGUvb3UgZGlzdHJpYnVpciBhIHN1YSBwdWJsaWNh77+977+9byAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0cu+/vW5pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mg77+9dWRpbyBvdSB277+9ZGVvLgoKVm9j77+9IGRlY2xhcmEgcXVlIGNvbmhlY2UgYSBwb2zvv710aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2Pvv70gY29uY29yZGEgcXVlIG8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250Ze+/vWRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNh77+977+9byBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHvv73vv71vLgoKVm9j77+9IHRhbWLvv71tIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPvv71waWEgZGUgc3VhIHB1YmxpY2Hvv73vv71vIHBhcmEgZmlucyBkZSBzZWd1cmFu77+9YSwgYmFjay11cCBlIHByZXNlcnZh77+977+9by4KClZvY++/vSBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNh77+977+9byDvv70gb3JpZ2luYWwgZSBxdWUgdm9j77+9IHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vu77+9YS4gVm9j77+9IHRhbWLvv71tIGRlY2xhcmEgcXVlIG8gZGVw77+9c2l0byBkZSBzdWEgcHVibGljYe+/ve+/vW8gbu+/vW8sIHF1ZSBzZWphIGRlIHNldSBjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd177+9bS4KCkNhc28gYSBzdWEgcHVibGljYe+/ve+/vW8gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY++/vSBu77+9byBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2Pvv70gZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc++/vW8gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7vv71hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250Ze+/vWRvIGRhIHB1YmxpY2Hvv73vv71vIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0Hvv73vv71PIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ++/vU5JTyBPVSBBUE9JTyBERSBVTUEgQUfvv71OQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0Pvv70gREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklT77+9TyBDT01PIFRBTULvv71NIEFTIERFTUFJUyBPQlJJR0Hvv73vv71FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNh77+977+9bywgZSBu77+9byBmYXLvv70gcXVhbHF1ZXIgYWx0ZXJh77+977+9bywgYWzvv71tIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7vv71hLgo=Repositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2023-04-27T19:19:35Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv Rolled-up quantum wells composed of nanolayered InGaAs/GaAs heterostructures as optical materials for quantum information technology
title Rolled-up quantum wells composed of nanolayered InGaAs/GaAs heterostructures as optical materials for quantum information technology
spellingShingle Rolled-up quantum wells composed of nanolayered InGaAs/GaAs heterostructures as optical materials for quantum information technology
Leonarde do Nascimento Rodrigues
Band structure inversion
Semiconductor quantum well
Optical selection rules
Rolled-up microtubes
Tensile and compressive hybrid state
Curved semiconductor membrane
Microtubos
Semicondutores
Informação quântica
title_short Rolled-up quantum wells composed of nanolayered InGaAs/GaAs heterostructures as optical materials for quantum information technology
title_full Rolled-up quantum wells composed of nanolayered InGaAs/GaAs heterostructures as optical materials for quantum information technology
title_fullStr Rolled-up quantum wells composed of nanolayered InGaAs/GaAs heterostructures as optical materials for quantum information technology
title_full_unstemmed Rolled-up quantum wells composed of nanolayered InGaAs/GaAs heterostructures as optical materials for quantum information technology
title_sort Rolled-up quantum wells composed of nanolayered InGaAs/GaAs heterostructures as optical materials for quantum information technology
author Leonarde do Nascimento Rodrigues
author_facet Leonarde do Nascimento Rodrigues
Lucas da Conceição
Ângelo Malachias de Souza
Odilon Divino Damasceno Couto Júnior
Fernando Iikawa
Christoph Friedrich Deneke
Diego Scolfaro da Silva
author_role author
author2 Lucas da Conceição
Ângelo Malachias de Souza
Odilon Divino Damasceno Couto Júnior
Fernando Iikawa
Christoph Friedrich Deneke
Diego Scolfaro da Silva
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Leonarde do Nascimento Rodrigues
Lucas da Conceição
Ângelo Malachias de Souza
Odilon Divino Damasceno Couto Júnior
Fernando Iikawa
Christoph Friedrich Deneke
Diego Scolfaro da Silva
dc.subject.por.fl_str_mv Band structure inversion
Semiconductor quantum well
Optical selection rules
Rolled-up microtubes
Tensile and compressive hybrid state
Curved semiconductor membrane
topic Band structure inversion
Semiconductor quantum well
Optical selection rules
Rolled-up microtubes
Tensile and compressive hybrid state
Curved semiconductor membrane
Microtubos
Semicondutores
Informação quântica
dc.subject.other.pt_BR.fl_str_mv Microtubos
Semicondutores
Informação quântica
description Strain-based band structure engineering is a powerful tool to tune the optical and electronic properties of semiconductor nanostructures. We show that we can tune the band structure of InGaAs semiconductor quantum wells and modify the helicity of the emitted light by integrating them into rolled-up heterostructures and changing their geometrical configuration. Experimental results from photoluminescence and photoluminescence excitation spectroscopy demonstrate a strong energy shift of the valence-band states in comparison to flat structures, as a consequence of an inversion of the heavy-hole with the light-hole states in a rolled-up InGaAs quantum well. The inversion and mixing of the band states lead to a strong change in the optical selection rules for the rolled-up quantum wells, which show vanishing spin polarization in the conduction band even under near-resonant excitation conditions. Band structure calculations are carried out to understand the changes in the electronic transitions and to predict the emission and absorption spectra for a given geometrical configuration. Comparison between experiment and theory shows an excellent agreement. These observed profound changes in the fundamental properties can be applied as a strategic route to develop novel optical devices for quantum information technology.
publishDate 2021
dc.date.issued.fl_str_mv 2021
dc.date.accessioned.fl_str_mv 2023-04-27T16:04:59Z
dc.date.available.fl_str_mv 2023-04-27T16:04:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/52585
dc.identifier.doi.pt_BR.fl_str_mv https://doi.org/10.1021/acsanm.1c00354
dc.identifier.issn.pt_BR.fl_str_mv 2574-0970
dc.identifier.orcid.pt_BR.fl_str_mv https://orcid.org/0000-0002-8703-4283
https://orcid.org/0000-0002-8416-3805
https://orcid.org/0000-0002-0865-7379
https://orcid.org/0000-0002-8556-386X
https://orcid.org/0000-0003-1127-4990
url https://doi.org/10.1021/acsanm.1c00354
http://hdl.handle.net/1843/52585
https://orcid.org/0000-0002-8703-4283
https://orcid.org/0000-0002-8416-3805
https://orcid.org/0000-0002-0865-7379
https://orcid.org/0000-0002-8556-386X
https://orcid.org/0000-0003-1127-4990
identifier_str_mv 2574-0970
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv ACS Applied Nano Materials
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.initials.fl_str_mv UFMG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ICX - DEPARTAMENTO DE FÍSICA
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/52585/1/License.txt
https://repositorio.ufmg.br/bitstream/1843/52585/2/Rolled-Up%20Quantum%20Wells%20Composed%20of%20Nanolayered%20InGaAs%20GaAs.pdf
bitstream.checksum.fl_str_mv fa505098d172de0bc8864fc1287ffe22
48f120ed54d845470fbb760ed5a5fcbf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1803589346594390016