Predicting heart rate during physical activities using artificial neural networks

Detalhes bibliográficos
Autor(a) principal: Davi Pedrosa de Aguiar
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/45612
Resumo: The heart rate (HR) is an important metric widely used by professionals and amateurs in endurance training as a proxy to physical strain, as it is through heartbeats that oxygen, nutrients and hormones are distributed to cells in the whole body. This metric is important for the prescription of physical exercises, as an effective training should elicit a HR within a certain range, so as to neither under-train, nor over-train an individual. Predicting the heart rate dynamics, nonetheless, is recognized as a hard task, due to a variety of influencing features, ranging from nutrition and mood to an individual’s genetics. Yet, the physical activity is regarded as one of the main drivers of the heart rate. There has been a few studies attempting to model the heart rate using different proxies for physical activities, such as speed and acceleration for running, or torque for cycling. Although these metrics might be good descriptors of the physical strain on the individual, for these specific activities, they are not general enough for describing the strain incurred by other activities, such as rope jumping. Measurements from Inertial Measurement Unit (IMU) sensor, such as accelerometers and gyroscopes present in smartphones and fitness watches, have been successfully applied in predicting the activity being performed by an individual, a task widely known as Human Activity Recognition (HAR). This suggests that these sensors could, in principle, provide more general representations of one’s physical strain, even if it is through the prediction of the activity. Very few published studies attempted using IMU signals to predict the heart rate, and, the ones that did, had some serious limitations, such as predicting over only a few seconds into the future before requiring re-calibration or considering only a single individual, raising some serious questions over its general applicability. In this dissertation, we propose a new model for HR estimation using IMU data, based on Recurrent Neural Networks (RNN). The rationale behind our model is that the same activity elicits different HR responses in different individuals, depending on the physical conditioning. Hence, our model attempts to encode the physical conditioning of an individual into a vector, dubbed PCE, using a specially designed subnetwork. The PCE is then used to initialize the initial hidden vectors of a RNN, that use long short-term memory (LSTM) units. xv We reinforce this encoding by jointly training a network which discriminates whether two PCEs belong to the same individual. We evaluate the proposed model when predicting the HR of 23 subjects performing a variety of physical activities, from IMU data available in public datasets (PAMAP2, PPGDaLiA). For comparison, we use as baselines the only model specifically proposed for this task and two adapted state-of-the-art models for the closely related task of HAR. Our method, named PCE-LSTM, yields over 10% lower mean absolute error. We demonstrate empirically that this error reduction is in part due to the use of the PCE. Last, we use two datasets (PPG-DaLiA, WESAD) to show that PCE-LSTM can also be successfully applied when photoplethysmography (PPG) sensors are available, outperforming the state-of-the-art deep learning baselines by more than 30%.
id UFMG_491c2c4876323f5a80410654fb54ceca
oai_identifier_str oai:repositorio.ufmg.br:1843/45612
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Fabricio Murai Ferreirahttp://lattes.cnpq.br/4002187845840872Renato Martins AssunçãoDaniel Sadoc Menaschehttp://lattes.cnpq.br/6963652361766440Davi Pedrosa de Aguiar2022-09-27T17:31:02Z2022-09-27T17:31:02Z2021-04-15http://hdl.handle.net/1843/45612The heart rate (HR) is an important metric widely used by professionals and amateurs in endurance training as a proxy to physical strain, as it is through heartbeats that oxygen, nutrients and hormones are distributed to cells in the whole body. This metric is important for the prescription of physical exercises, as an effective training should elicit a HR within a certain range, so as to neither under-train, nor over-train an individual. Predicting the heart rate dynamics, nonetheless, is recognized as a hard task, due to a variety of influencing features, ranging from nutrition and mood to an individual’s genetics. Yet, the physical activity is regarded as one of the main drivers of the heart rate. There has been a few studies attempting to model the heart rate using different proxies for physical activities, such as speed and acceleration for running, or torque for cycling. Although these metrics might be good descriptors of the physical strain on the individual, for these specific activities, they are not general enough for describing the strain incurred by other activities, such as rope jumping. Measurements from Inertial Measurement Unit (IMU) sensor, such as accelerometers and gyroscopes present in smartphones and fitness watches, have been successfully applied in predicting the activity being performed by an individual, a task widely known as Human Activity Recognition (HAR). This suggests that these sensors could, in principle, provide more general representations of one’s physical strain, even if it is through the prediction of the activity. Very few published studies attempted using IMU signals to predict the heart rate, and, the ones that did, had some serious limitations, such as predicting over only a few seconds into the future before requiring re-calibration or considering only a single individual, raising some serious questions over its general applicability. In this dissertation, we propose a new model for HR estimation using IMU data, based on Recurrent Neural Networks (RNN). The rationale behind our model is that the same activity elicits different HR responses in different individuals, depending on the physical conditioning. Hence, our model attempts to encode the physical conditioning of an individual into a vector, dubbed PCE, using a specially designed subnetwork. The PCE is then used to initialize the initial hidden vectors of a RNN, that use long short-term memory (LSTM) units. xv We reinforce this encoding by jointly training a network which discriminates whether two PCEs belong to the same individual. We evaluate the proposed model when predicting the HR of 23 subjects performing a variety of physical activities, from IMU data available in public datasets (PAMAP2, PPGDaLiA). For comparison, we use as baselines the only model specifically proposed for this task and two adapted state-of-the-art models for the closely related task of HAR. Our method, named PCE-LSTM, yields over 10% lower mean absolute error. We demonstrate empirically that this error reduction is in part due to the use of the PCE. Last, we use two datasets (PPG-DaLiA, WESAD) to show that PCE-LSTM can also be successfully applied when photoplethysmography (PPG) sensors are available, outperforming the state-of-the-art deep learning baselines by more than 30%.A frequência cardíaca (FC) é uma métrica amplamente utilizada por profissionais e amadores no treinamento de resistência por ser uma medida para esforço físico, uma vez que é através dos batimentos cardíacos que oxigênio, nutrientes e hormônios são distribuídos às células de todo o corpo. Essa métrica é importante para a prescrição de exercícios físicos, pois um treinamento efetivo deve provocar uma FC dentro de uma determinada faixa, de forma a treinar nem pouco, nem muito, um indivíduo. Prever a dinâmica da frequência cardíaca, no entanto, é uma tarefa reconhecidamente difícil, devido a variedade de atributos que a influenciam, que vão desde a nutrição e humor até a genética de um indivíduo. Ainda assim, a atividade física é considerada um dos principais impulsionadores do frequência cardíaca. Alguns estudos modelam a frequência cardíaca usando diferentes medidas para representar atividades físicas específicas, como velocidade e aceleração para corrida ou torque para ciclismo. Embora essas métricas descrevam bem o esforço físico do indivíduo para essas atividades, elas não são gerais o suficiente para descrever a esforço físico em outras, como pular corda. As medições de sensores de unidade de medida inercial (IMU), como acelerômetros e giroscópios presentes em smartphones e relógios esportivos, têm sido aplicadas com sucesso na previsão da atividade que está sendo realizada pelo indivíduo, uma tarefa amplamente conhecida como “reconhecimento de atividade humana” (HAR). Isso sugere que esses sensores poderiam, a princípio, fornecer representações mais gerais do esforço físico de uma pessoa, mesmo que seja por meio da previsão da atividade. Muito poucos estudos publicados, no entanto, usam sinais de IMU para prever a frequência cardíaca e, os que o fazem, apresentaram algumas limitações sérias, como prever apenas alguns segundos no futuro antes de requerer recalibração ou considerar apenas um único indivíduo em sua avaliação, levando a questionamentos sobre sua aplicabilidade geral. Nesta dissertação, propomos um novo modelo para estimativa de FC utilizando dados IMU, baseado em Redes Neurais Recorrentes (RNN). A lógica por trás de nosso modelo é que uma mesma atividade provoca diferentes respostas de FC em diferentes indivíduos, dependendo do seu condicionamento físico. Portanto, nosso modelo tenta codificar o condixiii cionamento físico de um indivíduo em um vetor, denominado PCE, usando um módulo especialmente projetado para isso. O PCE é então usado para inicializar os vetores ocultos iniciais de uma RNN, que usa de células do tipo LSTM. Reforçamos essa codificação treinando o modelo em conjunto uma rede que discrimina se dois PCEs pertencem ao mesmo indivíduo. Avaliamos o modelo proposto ao prever a FC de 23 indivíduos realizando uma variedade de atividades físicas, a partir de dados IMU disponíveis em datasets públicos (PAMAP2, PPG-DaLiA). Para comparação, usamos o único modelo proposto especificamente para esta tarefa e dois modelos em estado da arte para a tarefa de HAR (pela semelhança entre as tarefas). Nosso método, denominado PCE-LSTM, resulta em erro absoluto médio mais de 10 % menor que os demais modelos avaliados. Demonstramos empiricamente que essa redução do erro se deve, em parte, ao uso do PCE. Por fim, usamos dois datasets (PPG-DaLiA, WESAD) para mostrar que o PCE-LSTM também pode ser aplicado com sucesso quando os sensores de fotopletismografia (PPG) estão disponíveis, superando o modelo baseado em redes neurais que é estado da arte em aproximadamente 30 %.engUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em Ciência da ComputaçãoUFMGBrasilICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃOhttp://creativecommons.org/licenses/by/3.0/pt/info:eu-repo/semantics/openAccessComputação – TesesRedes neurais (Computação) – TesesFrequência cardíaca – TesesNeural NetworksHeart RatePredicting heart rate during physical activities using artificial neural networksPredição de batimento cardíaco em atividade física via redes neuraisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGLICENSElicense.txtlicense.txttext/plain; charset=utf-82118https://repositorio.ufmg.br/bitstream/1843/45612/5/license.txtcda590c95a0b51b4d15f60c9642ca272MD55ORIGINALppgccufmg___Davi (1).pdfppgccufmg___Davi (1).pdfapplication/pdf1967957https://repositorio.ufmg.br/bitstream/1843/45612/4/ppgccufmg___Davi%20%281%29.pdfed8581c850a6b889609cecec78818211MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufmg.br/bitstream/1843/45612/2/license_rdff9944a358a0c32770bd9bed185bb5395MD521843/456122022-09-27 14:31:03.262oai:repositorio.ufmg.br:1843/45612TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2022-09-27T17:31:03Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv Predicting heart rate during physical activities using artificial neural networks
dc.title.alternative.pt_BR.fl_str_mv Predição de batimento cardíaco em atividade física via redes neurais
title Predicting heart rate during physical activities using artificial neural networks
spellingShingle Predicting heart rate during physical activities using artificial neural networks
Davi Pedrosa de Aguiar
Neural Networks
Heart Rate
Computação – Teses
Redes neurais (Computação) – Teses
Frequência cardíaca – Teses
title_short Predicting heart rate during physical activities using artificial neural networks
title_full Predicting heart rate during physical activities using artificial neural networks
title_fullStr Predicting heart rate during physical activities using artificial neural networks
title_full_unstemmed Predicting heart rate during physical activities using artificial neural networks
title_sort Predicting heart rate during physical activities using artificial neural networks
author Davi Pedrosa de Aguiar
author_facet Davi Pedrosa de Aguiar
author_role author
dc.contributor.advisor1.fl_str_mv Fabricio Murai Ferreira
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4002187845840872
dc.contributor.referee1.fl_str_mv Renato Martins Assunção
dc.contributor.referee2.fl_str_mv Daniel Sadoc Menasche
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6963652361766440
dc.contributor.author.fl_str_mv Davi Pedrosa de Aguiar
contributor_str_mv Fabricio Murai Ferreira
Renato Martins Assunção
Daniel Sadoc Menasche
dc.subject.por.fl_str_mv Neural Networks
Heart Rate
topic Neural Networks
Heart Rate
Computação – Teses
Redes neurais (Computação) – Teses
Frequência cardíaca – Teses
dc.subject.other.pt_BR.fl_str_mv Computação – Teses
Redes neurais (Computação) – Teses
Frequência cardíaca – Teses
description The heart rate (HR) is an important metric widely used by professionals and amateurs in endurance training as a proxy to physical strain, as it is through heartbeats that oxygen, nutrients and hormones are distributed to cells in the whole body. This metric is important for the prescription of physical exercises, as an effective training should elicit a HR within a certain range, so as to neither under-train, nor over-train an individual. Predicting the heart rate dynamics, nonetheless, is recognized as a hard task, due to a variety of influencing features, ranging from nutrition and mood to an individual’s genetics. Yet, the physical activity is regarded as one of the main drivers of the heart rate. There has been a few studies attempting to model the heart rate using different proxies for physical activities, such as speed and acceleration for running, or torque for cycling. Although these metrics might be good descriptors of the physical strain on the individual, for these specific activities, they are not general enough for describing the strain incurred by other activities, such as rope jumping. Measurements from Inertial Measurement Unit (IMU) sensor, such as accelerometers and gyroscopes present in smartphones and fitness watches, have been successfully applied in predicting the activity being performed by an individual, a task widely known as Human Activity Recognition (HAR). This suggests that these sensors could, in principle, provide more general representations of one’s physical strain, even if it is through the prediction of the activity. Very few published studies attempted using IMU signals to predict the heart rate, and, the ones that did, had some serious limitations, such as predicting over only a few seconds into the future before requiring re-calibration or considering only a single individual, raising some serious questions over its general applicability. In this dissertation, we propose a new model for HR estimation using IMU data, based on Recurrent Neural Networks (RNN). The rationale behind our model is that the same activity elicits different HR responses in different individuals, depending on the physical conditioning. Hence, our model attempts to encode the physical conditioning of an individual into a vector, dubbed PCE, using a specially designed subnetwork. The PCE is then used to initialize the initial hidden vectors of a RNN, that use long short-term memory (LSTM) units. xv We reinforce this encoding by jointly training a network which discriminates whether two PCEs belong to the same individual. We evaluate the proposed model when predicting the HR of 23 subjects performing a variety of physical activities, from IMU data available in public datasets (PAMAP2, PPGDaLiA). For comparison, we use as baselines the only model specifically proposed for this task and two adapted state-of-the-art models for the closely related task of HAR. Our method, named PCE-LSTM, yields over 10% lower mean absolute error. We demonstrate empirically that this error reduction is in part due to the use of the PCE. Last, we use two datasets (PPG-DaLiA, WESAD) to show that PCE-LSTM can also be successfully applied when photoplethysmography (PPG) sensors are available, outperforming the state-of-the-art deep learning baselines by more than 30%.
publishDate 2021
dc.date.issued.fl_str_mv 2021-04-15
dc.date.accessioned.fl_str_mv 2022-09-27T17:31:02Z
dc.date.available.fl_str_mv 2022-09-27T17:31:02Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/45612
url http://hdl.handle.net/1843/45612
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/3.0/pt/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/3.0/pt/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação
dc.publisher.initials.fl_str_mv UFMG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/45612/5/license.txt
https://repositorio.ufmg.br/bitstream/1843/45612/4/ppgccufmg___Davi%20%281%29.pdf
https://repositorio.ufmg.br/bitstream/1843/45612/2/license_rdf
bitstream.checksum.fl_str_mv cda590c95a0b51b4d15f60c9642ca272
ed8581c850a6b889609cecec78818211
f9944a358a0c32770bd9bed185bb5395
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1803589505970601984