spelling |
Pablo Daniel Carrasco Correahttp://lattes.cnpq.br/8094045499632252Sônia Pinto de Carvalhohttp://lattes.cnpq.br/6695125616195750Christian RodriguesMarcelo Richard HilárioRenato FeresRenato Soares dos SantosSilvie Marie Kamphorsthttp://lattes.cnpq.br/9482405953282740Túlio Vales Deslandes Ferreira2021-07-07T01:42:18Z2021-07-07T01:42:18Z2021-04-14http://hdl.handle.net/1843/36670Na primeira parte da tese, trabalhamos com o passeio aleatório em ambiente aleatório determinado por um difeomorfismo parcialmente hiperbólico. Nesse trabalho encontramos condições necessárias e suficientes para existência de medida estacionária para este processo aleatório, recorrência e fizemos um estudo da dinâmica desse processo. Como caso particular, estudamos o tempo 1 do fluxo geodésico em uma variedade hiperbólica compacta. Além disso conseguimos uma lei dos grandes números e um Teorema Central do Limite. Na segunda parte da tese definimos um bilhar aleatório, com perturbação nos ângulos de saída e encontramos uma medida invariante para esse bilhar aleatório em mesas gerais. Fizemos um estudo mais detalhado no círculo e nesse caso encontramos expoente de Lyapunov nulo, mostramos a não ergodicidade desse sistema e uma lei chamada de Lei Forte de Knudsen. Mostramos que sob certas condições, quase toda trajetória (aleatória) é densa no bordo da mesa circular. Introduzimos também o conceito de pseudo cáusticas.In the first part of the thesis, we work with the random walk in a random environment determined by a partially hyperbolic diffeomorphism. In this work, we found necessary and sufficient conditions for the existence of a stationary measure for this random process, recurrence and we made a study of the dynamics of this process. As a particular case, we studied the time 1 of the geodesic flow in a compact hyperbolic manifold. In addition, we obtained a law of large numbers and a Central Limit Theorem. In the second part of the thesis we defined a random billiard, with a pertur bation in the exit angles and found an invariant measure for this random billiard in general tables. We did a more detailed study in the circle and in this case we found a null Lyapunov exponent, we showed the non-ergodicity of this system and a law called Knudsen’s Strong Law. We show that under certain conditions, almost all (random) trajectory is dense at the edge of the circular table. We also introduced the concept of pseudo caustics.FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em MatemáticaUFMGBrasilICX - DEPARTAMENTO DE MATEMÁTICAhttp://creativecommons.org/licenses/by-nc-nd/3.0/pt/info:eu-repo/semantics/openAccessMatemática – TesesPasseio aleatório (Matemática) – TesesDifeomorfismo (Matematica) – TesesFunções hiperbólicas – TesesPasseio AleatórioFluxo GeodésicoParcialmente HiperbólicoBilhar AleatórioExpoente de LyapunovLei Forte de KnudsenPasseios e bilhares: Uma incursão em sistemas dinâmicos aleatóriosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALTese-Uma incursão em sistemas dinâmicos aleatórios.pdfTese-Uma incursão em sistemas dinâmicos aleatórios.pdfapplication/pdf5233891https://repositorio.ufmg.br/bitstream/1843/36670/1/Tese-Uma%20incurs%c3%a3o%20em%20sistemas%20din%c3%a2micos%20aleat%c3%b3rios.pdf9e3191b97878160e1e357c4cd8500d14MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufmg.br/bitstream/1843/36670/2/license_rdfcfd6801dba008cb6adbd9838b81582abMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82118https://repositorio.ufmg.br/bitstream/1843/36670/3/license.txtcda590c95a0b51b4d15f60c9642ca272MD531843/366702021-07-06 22:42:19.197oai:repositorio.ufmg.br:1843/36670TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oaiopendoar:2021-07-07T01:42:19Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
|