spelling |
Arnaldo de Albuquerque AraujoMatthieu CordWilliam Robson SchwartzMario Fernando Montenegro Camposlorent PerronninPatrick GallinariEduardo Alves do Valle JruniorSandra Eliza Fontes de Avila2019-08-10T04:57:17Z2019-08-10T04:57:17Z2013-06-14http://hdl.handle.net/1843/ESSA-9ACJ4KInformação visual, na forma de imagens e vídeos digitais, tornou-se tão onipresente em repositórios de dados, que não pode mais ser considerada uma 'cidadã de segunda classe', eclipsada por informações textuais. Neste cenário, a classificação de imagens tornou-se uma tarefa crítica. Em particular, a busca pela identificação automática de conceitos semânticos complexos, representados em imagens, tais como cenas ou objetos, tem motivado pesquisadores em diversas áreas como, por exemplo, Recuperação de Informação, Visão Computacional, Processamento de Imagem e Inteligência Artificial. No entanto, em contraste com os documentos de texto, cujas palavras apresentam conteúdo semântico, imagens consistem de pixels que não têm nenhuma informação semântica por si só, tornando a tarefa muito difícil. O problema abordado nesta tese refere-se à representação de imagens com base no seu conteúdo visual. Objetiva-se a detecção de conceitos em imagens e vídeos, por meio de uma nova representação que enriquece o modelo saco de palavras visuais. Baseando-se na quantização de descritores locais discriminantes por um dicionário, e na agregação desses descritores quantizados em um vetor único, o modelo saco de palavras surgiu como uma das abordagens mais promissora para a classificação de imagens. Nesta tese, é proposto BossaNova, uma nova representação de imagens que preserva informações importantes sobre a distribuição dos descritores locais em torno de cada palavra visual. Os resultados experimentais em diversas bases de classificação de images, tais como ImageCLEF Photo Annotation, MIRFLICKR, PASCAL VOC e 15-Scenes, mostraram a vantagem da abordagem BossaNova quando comparada às técnicas tradicionais, mesmo sem fazer uso de combinações complexas de diferentes descritores locais. Uma extensão da representação BossaNova também foi estudada nesta tese. Trata-se da combinação da abordagem BossaNova com uma outra representação muito competitiva baseada nos vetores de Fisher. Os resultados consistemente alcançam outras representações no estado-da-arte em diversas bases de dados, demonstrando a complementaridade das duas abordagens. Este estudo resultou no segundo lugar, na competição ImageCLEF 2012 Flickr Photo Annotation Task, dentre as 28 submissões, na categoria de informação visual. Ademais, a representação BossaNova também foi avaliada na aplicação real de detecção de pornografia. Os resultados validaram, mais uma vez, a relevância da abordagem BossaNova em relação às técnicas tradicionais em uma aplicação realVisual information, in the form of digital images and videos, has become so omnipresent in computer databases and repositories, that it can no longer be considered a second class citizen, eclipsed by textual information. In that scenario, image classification has become a critical task. In particular, the pursuit of automatic identification of complex semantical concepts represented in images, such as scenes or objects, has motivated researchers in areas as diverse as Information Retrieval, Computer Vision, Image Processing and Artificial Intelligence. Nevertheless, in contrast to text documents, whose words carry semantic, images consist of pixels that have no semantic information by themselves, making the task very challenging. In this dissertation, we have addressed the problem of representing images based on their visual information. Our aim is content-based concept detection in images and videos, with a novel representation that enriches the Bag-of-Words model. Relying on the quantization of highly discriminant local descriptors by a codebook, and the aggregation of those quantized descriptors into a single pooled feature vector, the Bag-of- Words model has emerged as the most promising approach for image classification. We propose BossaNova, a novel image representation which offers a more informationpreserving pooling operation based on a distance-to-codeword distribution. The experimental evaluations on many challenging image classification benchmarks, such as ImageCLEF Photo Annotation, MIRFLICKR, PASCAL VOC and 15- Scenes, have shown the advantage of BossaNova when compared to traditional techniques, even without using complex combinations of different local descriptors. An extension of our approach has also been studied. It concerns the combination of BossaNova representation with another representation very competitive based on Fisher Vectors. The results consistently reaches other state-of-the-art representations in many datasets. It also experimentally demonstrate the complementarity of the two approaches. This study allowed us to achieve, in the competition ImageCLEF 2012 Flickr Photo Annotation Task, the 2nd among the 28 visual submissions. Finally, we have explored our BossaNova representation in the challenging real world application of pornography detection. Once again, the results validated the relevance of our approach compared to standard techniques on a real applicationUniversidade Federal de Minas GeraisUFMGVisão por computadorComputaçãoProcessamento de imagensReconhecimento de padrõesCiência da ComputaçãoExtended bag-of-words formalism for image classificationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALsandraavila_tese2013.pdfapplication/pdf7541943https://repositorio.ufmg.br/bitstream/1843/ESSA-9ACJ4K/1/sandraavila_tese2013.pdfa0b2795a9e368c9d443934e8dff45f81MD51TEXTsandraavila_tese2013.pdf.txtsandraavila_tese2013.pdf.txtExtracted texttext/plain346575https://repositorio.ufmg.br/bitstream/1843/ESSA-9ACJ4K/2/sandraavila_tese2013.pdf.txt2e588c2443a2b98d768334c90781f513MD521843/ESSA-9ACJ4K2019-11-14 08:33:38.15oai:repositorio.ufmg.br:1843/ESSA-9ACJ4KRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oaiopendoar:2019-11-14T11:33:38Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
|