Inuência do número de partículas na estimação de parâmetros via máxima verossimilhança em modelos de espaço de estados
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFMG |
Texto Completo: | http://hdl.handle.net/1843/BUOS-AZGLPH |
Resumo: | State space models are widely used to model various problems in the areas of economics and biology, so inferences, such as parameter estimation, for this class of models are important. For these cases, the algorithms of class of particle lters are able to solve questions related to non-linear and non-Gaussian models. Poyiadjis et al. (2011) proposes two versions of algorithms of this class for the parameter estimation in state space models. One version has linear computational complexity in the number of particles and the variance of the estimates that increases quadratically over time. The other one has a quadratic computational cost and variance of the estimates increases linear through time. Based on this results, Nemeth et al.(2016) presents a new version, using the kernel density methods and Rao-Blackwellisation, in which the variance of estimates and the computational complexity are linear. Therefore, in this paper, we analyze the inuence of the number of particles in this last version and we obtain an ideal number of particles to be used for the parameter estimation in state space models, for example, autoregressive model, stochastic volatility model, and Poisson model. Finally, we use a bootstrap lter version to compare with the model shown by Nemeth et al. (2016) |
id |
UFMG_69729e061bc0f41c86465a3206a8076a |
---|---|
oai_identifier_str |
oai:repositorio.ufmg.br:1843/BUOS-AZGLPH |
network_acronym_str |
UFMG |
network_name_str |
Repositório Institucional da UFMG |
repository_id_str |
|
spelling |
Inuência do número de partículas na estimação de parâmetros via máxima verossimilhança em modelos de espaço de estadosEstimação de parâmetrosFiltro de partículasModelo de espaço de estadosNúmero de partículasEstatisticaAnálise de variânciaTeoria da estimativaState space models are widely used to model various problems in the areas of economics and biology, so inferences, such as parameter estimation, for this class of models are important. For these cases, the algorithms of class of particle lters are able to solve questions related to non-linear and non-Gaussian models. Poyiadjis et al. (2011) proposes two versions of algorithms of this class for the parameter estimation in state space models. One version has linear computational complexity in the number of particles and the variance of the estimates that increases quadratically over time. The other one has a quadratic computational cost and variance of the estimates increases linear through time. Based on this results, Nemeth et al.(2016) presents a new version, using the kernel density methods and Rao-Blackwellisation, in which the variance of estimates and the computational complexity are linear. Therefore, in this paper, we analyze the inuence of the number of particles in this last version and we obtain an ideal number of particles to be used for the parameter estimation in state space models, for example, autoregressive model, stochastic volatility model, and Poisson model. Finally, we use a bootstrap lter version to compare with the model shown by Nemeth et al. (2016)Modelos de espaço de estados são muito utilizados para modelar diversos problemas nas áreas de economia e biologia, por isso a realização de inferências, como, por exemplo, a estimação de parâmetros, para essa classe de modelos é importante. Para esses casos, os algoritmos da classe dos ltros de partículas são capazes de resolver questões relacionadas aos modelos não lineares e não gaussianos. Poyiadjisetal.(2011) propõe duas versões de algoritmos dessa classe para a estimação de parâmetros em modelos de espaço de estados. Uma versão tem complexidade computacional linear no número de partículas e a variância da estimativa cresce quadraticamente com o tempo. A outra versão tem custo computacional quadrático e a variância da estimativa linear. Com base nisso, Nemeth et al. (2016) apresenta uma nova versão, com a utilização de métodos de densidade de kernel e Rao-Blackwell, em que a variância da estimativa e a complexidade computacional são lineares. Neste trabalho, portanto, analisamos a inuência do número de partículas nessa última versão e obtemos um número ideal de partículas a ser utilizado para a estimação de parâmetros em modelos de espaço de estado, como, por exemplo, autorregressivo, de volatilidade estocástica e Poisson, por m, utilizamos ainda uma versão com ltro bootstrap para comparar com a proposta apresentada por Nemeth et al. (2016)Universidade Federal de Minas GeraisUFMGLuiz Henrique DuczmalFelipe Carvalho Alvares da SilvaFelipe Carvalho Alvares da SilvaSokol NdrecaThiago Rezende dos SantosDenise Burgarelli DuczmalRodolfo Santos Nunes Rodrigues2019-08-10T08:59:42Z2019-08-10T08:59:42Z2018-03-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/1843/BUOS-AZGLPHinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2019-11-14T08:16:19Zoai:repositorio.ufmg.br:1843/BUOS-AZGLPHRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2019-11-14T08:16:19Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
dc.title.none.fl_str_mv |
Inuência do número de partículas na estimação de parâmetros via máxima verossimilhança em modelos de espaço de estados |
title |
Inuência do número de partículas na estimação de parâmetros via máxima verossimilhança em modelos de espaço de estados |
spellingShingle |
Inuência do número de partículas na estimação de parâmetros via máxima verossimilhança em modelos de espaço de estados Rodolfo Santos Nunes Rodrigues Estimação de parâmetros Filtro de partículas Modelo de espaço de estados Número de partículas Estatistica Análise de variância Teoria da estimativa |
title_short |
Inuência do número de partículas na estimação de parâmetros via máxima verossimilhança em modelos de espaço de estados |
title_full |
Inuência do número de partículas na estimação de parâmetros via máxima verossimilhança em modelos de espaço de estados |
title_fullStr |
Inuência do número de partículas na estimação de parâmetros via máxima verossimilhança em modelos de espaço de estados |
title_full_unstemmed |
Inuência do número de partículas na estimação de parâmetros via máxima verossimilhança em modelos de espaço de estados |
title_sort |
Inuência do número de partículas na estimação de parâmetros via máxima verossimilhança em modelos de espaço de estados |
author |
Rodolfo Santos Nunes Rodrigues |
author_facet |
Rodolfo Santos Nunes Rodrigues |
author_role |
author |
dc.contributor.none.fl_str_mv |
Luiz Henrique Duczmal Felipe Carvalho Alvares da Silva Felipe Carvalho Alvares da Silva Sokol Ndreca Thiago Rezende dos Santos Denise Burgarelli Duczmal |
dc.contributor.author.fl_str_mv |
Rodolfo Santos Nunes Rodrigues |
dc.subject.por.fl_str_mv |
Estimação de parâmetros Filtro de partículas Modelo de espaço de estados Número de partículas Estatistica Análise de variância Teoria da estimativa |
topic |
Estimação de parâmetros Filtro de partículas Modelo de espaço de estados Número de partículas Estatistica Análise de variância Teoria da estimativa |
description |
State space models are widely used to model various problems in the areas of economics and biology, so inferences, such as parameter estimation, for this class of models are important. For these cases, the algorithms of class of particle lters are able to solve questions related to non-linear and non-Gaussian models. Poyiadjis et al. (2011) proposes two versions of algorithms of this class for the parameter estimation in state space models. One version has linear computational complexity in the number of particles and the variance of the estimates that increases quadratically over time. The other one has a quadratic computational cost and variance of the estimates increases linear through time. Based on this results, Nemeth et al.(2016) presents a new version, using the kernel density methods and Rao-Blackwellisation, in which the variance of estimates and the computational complexity are linear. Therefore, in this paper, we analyze the inuence of the number of particles in this last version and we obtain an ideal number of particles to be used for the parameter estimation in state space models, for example, autoregressive model, stochastic volatility model, and Poisson model. Finally, we use a bootstrap lter version to compare with the model shown by Nemeth et al. (2016) |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03-09 2019-08-10T08:59:42Z 2019-08-10T08:59:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1843/BUOS-AZGLPH |
url |
http://hdl.handle.net/1843/BUOS-AZGLPH |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais UFMG |
publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais UFMG |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
instname_str |
Universidade Federal de Minas Gerais (UFMG) |
instacron_str |
UFMG |
institution |
UFMG |
reponame_str |
Repositório Institucional da UFMG |
collection |
Repositório Institucional da UFMG |
repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
repository.mail.fl_str_mv |
repositorio@ufmg.br |
_version_ |
1823248292325097472 |