Detalhes bibliográficos
Título da fonte: Repositório Institucional da UFMG
id UFMG_69729e061bc0f41c86465a3206a8076a
oai_identifier_str oai:repositorio.ufmg.br:1843/BUOS-AZGLPH
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
reponame_str Repositório Institucional da UFMG
instacron_str UFMG
institution Universidade Federal de Minas Gerais (UFMG)
instname_str Universidade Federal de Minas Gerais (UFMG)
spelling Luiz Henrique DuczmalFelipe Carvalho Alvares da SilvaFelipe Carvalho Alvares da SilvaSokol NdrecaThiago Rezende dos SantosDenise Burgarelli DuczmalRodolfo Santos Nunes Rodrigues2019-08-10T08:59:42Z2019-08-10T08:59:42Z2018-03-09http://hdl.handle.net/1843/BUOS-AZGLPHModelos de espaço de estados são muito utilizados para modelar diversos problemas nas áreas de economia e biologia, por isso a realização de inferências, como, por exemplo, a estimação de parâmetros, para essa classe de modelos é importante. Para esses casos, os algoritmos da classe dos ltros de partículas são capazes de resolver questões relacionadas aos modelos não lineares e não gaussianos. Poyiadjisetal.(2011) propõe duas versões de algoritmos dessa classe para a estimação de parâmetros em modelos de espaço de estados. Uma versão tem complexidade computacional linear no número de partículas e a variância da estimativa cresce quadraticamente com o tempo. A outra versão tem custo computacional quadrático e a variância da estimativa linear. Com base nisso, Nemeth et al. (2016) apresenta uma nova versão, com a utilização de métodos de densidade de kernel e Rao-Blackwell, em que a variância da estimativa e a complexidade computacional são lineares. Neste trabalho, portanto, analisamos a inuência do número de partículas nessa última versão e obtemos um número ideal de partículas a ser utilizado para a estimação de parâmetros em modelos de espaço de estado, como, por exemplo, autorregressivo, de volatilidade estocástica e Poisson, por m, utilizamos ainda uma versão com ltro bootstrap para comparar com a proposta apresentada por Nemeth et al. (2016)State space models are widely used to model various problems in the areas of economics and biology, so inferences, such as parameter estimation, for this class of models are important. For these cases, the algorithms of class of particle lters are able to solve questions related to non-linear and non-Gaussian models. Poyiadjis et al. (2011) proposes two versions of algorithms of this class for the parameter estimation in state space models. One version has linear computational complexity in the number of particles and the variance of the estimates that increases quadratically over time. The other one has a quadratic computational cost and variance of the estimates increases linear through time. Based on this results, Nemeth et al.(2016) presents a new version, using the kernel density methods and Rao-Blackwellisation, in which the variance of estimates and the computational complexity are linear. Therefore, in this paper, we analyze the inuence of the number of particles in this last version and we obtain an ideal number of particles to be used for the parameter estimation in state space models, for example, autoregressive model, stochastic volatility model, and Poisson model. Finally, we use a bootstrap lter version to compare with the model shown by Nemeth et al. (2016)Universidade Federal de Minas GeraisUFMGEstatisticaAnálise de variânciaTeoria da estimativaEstimação de parâmetrosFiltro de partículasModelo de espaço de estadosNúmero de partículasInuência do número de partículas na estimação de parâmetros via máxima verossimilhança em modelos de espaço de estadosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALdissertacaorodolfo.pdfapplication/pdf241218https://repositorio.ufmg.br/bitstream/1843/BUOS-AZGLPH/1/dissertacaorodolfo.pdfc969d33968d3b013178a02c4c8a37035MD51TEXTdissertacaorodolfo.pdf.txtdissertacaorodolfo.pdf.txtExtracted texttext/plain60255https://repositorio.ufmg.br/bitstream/1843/BUOS-AZGLPH/2/dissertacaorodolfo.pdf.txt2362584d2c7567c901b9ca134e697f5cMD521843/BUOS-AZGLPH2019-11-14 05:16:19.733oai:repositorio.ufmg.br:1843/BUOS-AZGLPHRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oaiopendoar:2019-11-14T08:16:19Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
_version_ 1813548239463383040