Modeling Pharmacological Effects with Multi-Relation Unsupervised Graph Embedding

Detalhes bibliográficos
Autor(a) principal: Dehua Chen
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/42300
Resumo: Drug repositioning (aka repurposing) can be defined as renewing failed drugs (proved safety but failed to show efficacy for their primary indication) and expanding successful ones by developing new therapeutic uses that are beyond their original uses or initial approved indications. Repositioned drugs account for approximately 30\% of the US Food and Drug Administration (FDA) approved drugs in recent years. A repositioned drug uses de-risked compounds, going directly to preclinical testing and clinical trials, thus providing inexpensive alternatives to the costly pipeline associated with the development of new drugs. A pharmacological effect of a drug on cells, organs and systems refers to the specific biochemical interaction produced by a drug substance, which is called its mechanism of action. There are several approaches for novel repositioning opportunities identification, such as signature matching, molecular docking and genetic association in literature. In this work, we present a novel method based on a multi-relation unsupervised graph embedding model that learns latent representations for drugs (mechanisms of action) and diseases so that the distance between these representations reveals repositioning opportunities. Once representations for drugs and diseases are obtained we learn the likelihood of new links (that is, new indications) between drugs and diseases. Known drug indications are used for learning a model that predicts potential indications. Compared with existing unsupervised graph embedding methods our method shows superior prediction performance in terms of area under the ROC curve, and we present examples of repositioning opportunities found on recent biomedical literature that were also predicted by our method.
id UFMG_6abf5bbd87f4b0d6d2c65e97d6b8452e
oai_identifier_str oai:repositorio.ufmg.br:1843/42300
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Adriano Alonso Velosohttp://lattes.cnpq.br/9973021912226739Nivio ZivianiRaquel Cardoso de Melo MinardiDeborah Schechtmanhttp://lattes.cnpq.br/1641521413108988Dehua Chen2022-06-07T00:22:17Z2022-06-07T00:22:17Z2020-03-30http://hdl.handle.net/1843/42300Drug repositioning (aka repurposing) can be defined as renewing failed drugs (proved safety but failed to show efficacy for their primary indication) and expanding successful ones by developing new therapeutic uses that are beyond their original uses or initial approved indications. Repositioned drugs account for approximately 30\% of the US Food and Drug Administration (FDA) approved drugs in recent years. A repositioned drug uses de-risked compounds, going directly to preclinical testing and clinical trials, thus providing inexpensive alternatives to the costly pipeline associated with the development of new drugs. A pharmacological effect of a drug on cells, organs and systems refers to the specific biochemical interaction produced by a drug substance, which is called its mechanism of action. There are several approaches for novel repositioning opportunities identification, such as signature matching, molecular docking and genetic association in literature. In this work, we present a novel method based on a multi-relation unsupervised graph embedding model that learns latent representations for drugs (mechanisms of action) and diseases so that the distance between these representations reveals repositioning opportunities. Once representations for drugs and diseases are obtained we learn the likelihood of new links (that is, new indications) between drugs and diseases. Known drug indications are used for learning a model that predicts potential indications. Compared with existing unsupervised graph embedding methods our method shows superior prediction performance in terms of area under the ROC curve, and we present examples of repositioning opportunities found on recent biomedical literature that were also predicted by our method.O reposicionamento de medicamentos (também conhecido como reaproveitamento) pode ser definido como a renovação de medicamentos não aprovados (com uso seguro comprovado, mas não demonstrou eficácia na indicação primária) e a expansão de uso dos medicamentos aprovados, desenvolvendo novos usos terapêuticos, que estão além dos seus usos originais inicialmente aprovados. Os medicamentos reposicionados representam aproximadamente 30% dos medicamentos aprovados pela Food and Drug Administration (FDA) dos EUA nos últimos anos. Um fármaco reposicionado usa compostos de menor risco, podendo ir diretamente para testes pré-clínicos e ensaios clínicos, fornecendo assim alternativas mais baratas comparando ao pipeline caro do desenvolvimento de novos fármacos. Um efeito farmacológico de um medicamento nas células, órgãos e sistemas refere-se à interação bioquímica específica produzida por um medicamento, também chamado como mecanismo de ação. Existem várias abordagens para a identificação de novas oportunidades de reposicionamento, como correspondência de assinatura, docagem molecular (acoplamento molecular, or ancoragem molecular) e associação genética na literatura. Neste trabalho, apresentamos um novo método baseado em um modelo de representações não supervisionadas de grafos multi-relacionais que aprende representações latentes de medicamentos (mecanismo de ação) e doenças, de modo que a distância entre essas representações revele oportunidades de reposicionamento. Uma vez obtidas representações de medicamentos e doenças, aprendemos a predizer a probabilidade de novas indicações entre medicamentos e doenças. As indicações conhecidas de medicamentos são usadas para aprender um modelo que prediz potenciais novas indicações de medicamentos. Comparado com os métodos existentes de representações não supervisionadas de grafos, nosso método mostra desempenho superior em termos de área abaixo da curva ROC (area under the ROC curve ). Também apresentamos exemplos de oportunidades de reposicionamento encontradas na literatura biomédica recente que também foram previstas pelo nosso método.engUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em Ciência da ComputaçãoUFMGBrasilICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃOComputação – TesesAprendizado do computador – TesesAprendizado de Representações – TesesDrug RepositioningGraph EmbeddingNode EmbeddingDrug RepurposingModeling Pharmacological Effects with Multi-Relation Unsupervised Graph Embeddinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALchen_master_thesis.pdfchen_master_thesis.pdfcorreções feitasapplication/pdf394726https://repositorio.ufmg.br/bitstream/1843/42300/3/chen_master_thesis.pdf058a9e93094afa086820e9057e43f306MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82118https://repositorio.ufmg.br/bitstream/1843/42300/4/license.txtcda590c95a0b51b4d15f60c9642ca272MD541843/423002022-06-06 21:22:17.719oai:repositorio.ufmg.br:1843/42300TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2022-06-07T00:22:17Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv Modeling Pharmacological Effects with Multi-Relation Unsupervised Graph Embedding
title Modeling Pharmacological Effects with Multi-Relation Unsupervised Graph Embedding
spellingShingle Modeling Pharmacological Effects with Multi-Relation Unsupervised Graph Embedding
Dehua Chen
Drug Repositioning
Graph Embedding
Node Embedding
Drug Repurposing
Computação – Teses
Aprendizado do computador – Teses
Aprendizado de Representações – Teses
title_short Modeling Pharmacological Effects with Multi-Relation Unsupervised Graph Embedding
title_full Modeling Pharmacological Effects with Multi-Relation Unsupervised Graph Embedding
title_fullStr Modeling Pharmacological Effects with Multi-Relation Unsupervised Graph Embedding
title_full_unstemmed Modeling Pharmacological Effects with Multi-Relation Unsupervised Graph Embedding
title_sort Modeling Pharmacological Effects with Multi-Relation Unsupervised Graph Embedding
author Dehua Chen
author_facet Dehua Chen
author_role author
dc.contributor.advisor1.fl_str_mv Adriano Alonso Veloso
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9973021912226739
dc.contributor.advisor-co1.fl_str_mv Nivio Ziviani
dc.contributor.referee1.fl_str_mv Raquel Cardoso de Melo Minardi
dc.contributor.referee2.fl_str_mv Deborah Schechtman
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1641521413108988
dc.contributor.author.fl_str_mv Dehua Chen
contributor_str_mv Adriano Alonso Veloso
Nivio Ziviani
Raquel Cardoso de Melo Minardi
Deborah Schechtman
dc.subject.por.fl_str_mv Drug Repositioning
Graph Embedding
Node Embedding
Drug Repurposing
topic Drug Repositioning
Graph Embedding
Node Embedding
Drug Repurposing
Computação – Teses
Aprendizado do computador – Teses
Aprendizado de Representações – Teses
dc.subject.other.pt_BR.fl_str_mv Computação – Teses
Aprendizado do computador – Teses
Aprendizado de Representações – Teses
description Drug repositioning (aka repurposing) can be defined as renewing failed drugs (proved safety but failed to show efficacy for their primary indication) and expanding successful ones by developing new therapeutic uses that are beyond their original uses or initial approved indications. Repositioned drugs account for approximately 30\% of the US Food and Drug Administration (FDA) approved drugs in recent years. A repositioned drug uses de-risked compounds, going directly to preclinical testing and clinical trials, thus providing inexpensive alternatives to the costly pipeline associated with the development of new drugs. A pharmacological effect of a drug on cells, organs and systems refers to the specific biochemical interaction produced by a drug substance, which is called its mechanism of action. There are several approaches for novel repositioning opportunities identification, such as signature matching, molecular docking and genetic association in literature. In this work, we present a novel method based on a multi-relation unsupervised graph embedding model that learns latent representations for drugs (mechanisms of action) and diseases so that the distance between these representations reveals repositioning opportunities. Once representations for drugs and diseases are obtained we learn the likelihood of new links (that is, new indications) between drugs and diseases. Known drug indications are used for learning a model that predicts potential indications. Compared with existing unsupervised graph embedding methods our method shows superior prediction performance in terms of area under the ROC curve, and we present examples of repositioning opportunities found on recent biomedical literature that were also predicted by our method.
publishDate 2020
dc.date.issued.fl_str_mv 2020-03-30
dc.date.accessioned.fl_str_mv 2022-06-07T00:22:17Z
dc.date.available.fl_str_mv 2022-06-07T00:22:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/42300
url http://hdl.handle.net/1843/42300
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação
dc.publisher.initials.fl_str_mv UFMG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/42300/3/chen_master_thesis.pdf
https://repositorio.ufmg.br/bitstream/1843/42300/4/license.txt
bitstream.checksum.fl_str_mv 058a9e93094afa086820e9057e43f306
cda590c95a0b51b4d15f60c9642ca272
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1803589501684023296