Detalhes bibliográficos
Título da fonte: Repositório Institucional da UFMG
id UFMG_72e7c7d94b67df7f4d4a2b8af54fd0a0
oai_identifier_str oai:repositorio.ufmg.br:1843/43182
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
reponame_str Repositório Institucional da UFMG
instacron_str UFMG
institution Universidade Federal de Minas Gerais (UFMG)
instname_str Universidade Federal de Minas Gerais (UFMG)
spelling Lucas Alvares da Silva Mólhttp://lattes.cnpq.br/3856794392358154Bismarck Vaz da CostaJoão Antônio PlascakRonald DickmanJulio Cesar Siqueira RochaLeandro Gutierrez Rizzihttp://lattes.cnpq.br/1250211230481846Ronaldo Givisiez Melo Rodrigues2022-07-12T12:09:16Z2022-07-12T12:09:16Z2021-12-10http://hdl.handle.net/1843/43182https://orcid.org/0000-0002-1232-3400O método dos zeros de Fisher é usado para identificar transições de fase, não sendo necessário estimar grandezas termodinâmicas em diversas temperaturas ou definir um parâmetro de ordem. Entretanto, essa abordagem é difícil de ser aplicada na prática, pois é necessário resolver um polinômio de grau elevadíssimo cujos coeficientes são dados pela densidade de estados. Além disso, tanto os valores da densidade de estados quanto o grau do polinômio crescem muito rapidamente com o tamanho do sistema. Nestas condições, até mesmo algoritmos no estado da arte encontram dificuldades para encontrar as raízes do polinômio. Visando resolver estes problemas, o método dos zeros da distribuição de probabilidade da energia (EPD) foi criado. De fato, os zeros EPD são capazes de determinar o expoente crítico e a temperatura de transição como os zeros de Fisher, porém sem a maioria dos seus problemas. Um problema que ainda encontramos é o crescimento rápido do grau do polinômio com o tamanho do sistema. Desta forma, para amenizar estes problemas e também ampliar as possíveis aplicação dos zeros Fisher, nós propomos um novo método que usa os zeros da função geradora dos momentos (MGF). Os zeros da MGF, possuem a mesma informação termodinâmica que os zeros de Fisher, mas seu polinômio é ainda mais simples de ser resolvido que o polinômio dos zeros EPD. Além disso, o grau do polinômio dos zeros da MGF cresce mais lentamente com o tamanho do sistema. Sendo assim, este novo método é mais adequado para ser utilizado que os zeros Fisher e os zeros EPD. Nesta tese, nós mostramos em detalhes o desenvolvimento do método dos zeros da MGF, sua relação com os zeros da distribuição de probabilidade da energia (EPD) e sua relação com o método dos cumulantes. Além disso, usando os modelos de Potts com 6-estados e o modelo de Ising em 2 e 3 dimensões, nós mostramos que os zeros da MGF obtêm resultados equivalentes aos zeros EPD e ao método dos cumulantes. Porém, ao ser comparado com os zeros EPD, os zeros da MGF são mais rápidos e utilizam menos recursos computacionais, principalmente em sistemas grandes ou que passem por transições de fase descontinuas. Além disso, quando comparado ao método dos cumulantes, os zeros da MGF apresentam a vantagem de conseguir obter mais de uma estimativa para os expoentes críticos. Desta forma, mostramos que o método dos zeros da MGF marca um avanço importante para os zeros da função de partição.The method of Fisher zeros is used to identify phase transitions without the need to estimate thermodynamic quantities at various temperatures or define an order parameter. However, this method is difficult to apply in practice because it requires solving a highdegree polynomial with coefficients given by the density of states. Furthermore, the values of the density of states and the degree of the polynomial both increase rapidly with system size. These conditions imply that even state-of-the-art root finder algorithms suffer from numerical instabilities, especially for large system sizes. Aiming to solve the Fisher zeros problems, the zeros of the energy probability distribution (EPD) was created. In fact, it is known that the EPD zeros reproduce the results of the Fisher zeros but without some of its problems. The EPD zeros still have one problem, that is, the fast growth of the degree of the polynomial with the system size. To alleviate this problem and to expand the method’s applicability, we proposed a new method that uses the moment-generating function zeros (MGF). It is easy to show that the MGF zeros contain the same information as the Fisher zeros, but with the benefit of a polynomial that is simpler to solve, compared to the EPD zeros method. In addition to that, the MGF zeros polynomial has a low degree that increases slowly as the system size grows. Therefore, this new method is more suitable to be used than the Fisher zeros and the EPD zeros. In this dissertation, we show in detail the development of the MGF zeros method, its relation with the energy probability distribution zeros (EPD), and the relation with a cumulant method. Moreover, using the six-state Potts model and the Ising model in 2 and 3 dimensions, we showed that the MGF zeros yield results statistically equivalent to those of the EPD zeros and the cumulant method. However, when compared to the EPD zeros, the MGF zeros are shown to be computationally cheaper and faster, especially in systems that undergo discontinuous phase transition or that have big lattice sizes. Furthermore, when compared to the cumulant method, the MGF zeros have the advantage of finding more estimates for the critical exponent. Thus, the MGF zeros are an important advance over the partition function zeros.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em FísicaUFMGBrasilICX - DEPARTAMENTO DE FÍSICAhttp://creativecommons.org/licenses/by-nd/3.0/pt/info:eu-repo/semantics/openAccessTransição de faseModelo de IsingProbabilidadesTransições de faseZeros da função de partiçãoZeros da MGFZeros da EPDModelo de IsingModelo de PottsZeros da função geradora dos momentos: uma nova abordagem para os zeros da função de partiçãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALZeros da Função Geradora dos Momentos: Uma nova abordagem para os zeros da função de partição - Ronaldo.pdfZeros da Função Geradora dos Momentos: Uma nova abordagem para os zeros da função de partição - Ronaldo.pdfapplication/pdf2543801https://repositorio.ufmg.br/bitstream/1843/43182/1/Zeros%20da%20Fun%c3%a7%c3%a3o%20Geradora%20dos%20Momentos%3a%20Uma%20nova%0d%0aabordagem%20para%20os%20zeros%20da%20fun%c3%a7%c3%a3o%20de%20parti%c3%a7%c3%a3o%20-%20Ronaldo.pdf07a99caad160c701b1a13b1fad4f796bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.ufmg.br/bitstream/1843/43182/2/license_rdf00e5e6a57d5512d202d12cb48704dfd6MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82118https://repositorio.ufmg.br/bitstream/1843/43182/3/license.txtcda590c95a0b51b4d15f60c9642ca272MD531843/431822022-07-12 09:09:17.292oai:repositorio.ufmg.br:1843/43182TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oaiopendoar:2022-07-12T12:09:17Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
_version_ 1813547274366615552