Distributed mathematical model and experimental validation for a CO2 heat pump assisted by solar energy

Detalhes bibliográficos
Autor(a) principal: Humberto de Oliveira Reis
Data de Publicação: 2022
Outros Autores: Tiago de Freitas Paulino, Luiz Machado, Willian Moreira Duarte
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/58542
Resumo: A use of CO2 operating in a transcritical cycle has been proven for heat pumps is a demonstrably viable and considerably interesting option due to the environmental advantages of CO2 over other refrigerant gases. In order to improve the energy performance of systems that use heat pumps, integrating a type of energy such as renewable geothermal, solar, wind and bio-fuels must be available. In this scenario, a mathematical model with experimental validation of the components that allows the modeling of the heat pump system to vary the input parameters and determine the outlet water temperature and the coefficient of performance (COP) of the heat pump. This article approaches the modeling of the DX-SAHP, in order to obtain the profile of temperature and pressure distribution along the gas cooler, and the values of heat exchange and pressure in collector solar/evaporator. The model was validated with experimental data from 88 tests performed under different operating conditions, even the DX-SAHP in question. In the experimental the radiation incidence range in the study environment was from 0 to 845 W/m² and at an ambient temperature of 21°C to 33°C. The maximum difference between the theoretical results and experimental results was 9.5%.
id UFMG_7369f94120984ed009e08792a4a37cbf
oai_identifier_str oai:repositorio.ufmg.br:1843/58542
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling 2023-09-07T00:24:57Z2023-09-07T00:24:57Z202219110http://hdl.handle.net/1843/58542A use of CO2 operating in a transcritical cycle has been proven for heat pumps is a demonstrably viable and considerably interesting option due to the environmental advantages of CO2 over other refrigerant gases. In order to improve the energy performance of systems that use heat pumps, integrating a type of energy such as renewable geothermal, solar, wind and bio-fuels must be available. In this scenario, a mathematical model with experimental validation of the components that allows the modeling of the heat pump system to vary the input parameters and determine the outlet water temperature and the coefficient of performance (COP) of the heat pump. This article approaches the modeling of the DX-SAHP, in order to obtain the profile of temperature and pressure distribution along the gas cooler, and the values of heat exchange and pressure in collector solar/evaporator. The model was validated with experimental data from 88 tests performed under different operating conditions, even the DX-SAHP in question. In the experimental the radiation incidence range in the study environment was from 0 to 845 W/m² and at an ambient temperature of 21°C to 33°C. The maximum difference between the theoretical results and experimental results was 9.5%.engUniversidade Federal de Minas GeraisUFMGBrasilENG - DEPARTAMENTO DE ENGENHARIA MECÂNICAAtribuição 3.0 Portugalhttp://creativecommons.org/licenses/by/3.0/pt/info:eu-repo/semantics/openAccessEvaporadoresDX-SAHPMathematical modeEvaporatorDistributed mathematical model and experimental validation for a CO2 heat pump assisted by solar energyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectHumberto de Oliveira ReisTiago de Freitas PaulinoLuiz MachadoWillian Moreira Duarteapplication/pdfreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALDISTRIBUTED MATHEMATICAL MODEL AND EXPERIMENTAL.pdfDISTRIBUTED MATHEMATICAL MODEL AND EXPERIMENTAL.pdfapplication/pdf1237994https://repositorio.ufmg.br/bitstream/1843/58542/1/DISTRIBUTED%20MATHEMATICAL%20MODEL%20AND%20EXPERIMENTAL.pdfad5b2c04894a7fd6a011c595a7a1c519MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufmg.br/bitstream/1843/58542/2/license_rdff9944a358a0c32770bd9bed185bb5395MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82118https://repositorio.ufmg.br/bitstream/1843/58542/3/license.txtcda590c95a0b51b4d15f60c9642ca272MD531843/585422023-09-06 21:24:57.547oai:repositorio.ufmg.br:1843/58542TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2023-09-07T00:24:57Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv Distributed mathematical model and experimental validation for a CO2 heat pump assisted by solar energy
title Distributed mathematical model and experimental validation for a CO2 heat pump assisted by solar energy
spellingShingle Distributed mathematical model and experimental validation for a CO2 heat pump assisted by solar energy
Humberto de Oliveira Reis
DX-SAHP
Mathematical mode
Evaporator
Evaporadores
title_short Distributed mathematical model and experimental validation for a CO2 heat pump assisted by solar energy
title_full Distributed mathematical model and experimental validation for a CO2 heat pump assisted by solar energy
title_fullStr Distributed mathematical model and experimental validation for a CO2 heat pump assisted by solar energy
title_full_unstemmed Distributed mathematical model and experimental validation for a CO2 heat pump assisted by solar energy
title_sort Distributed mathematical model and experimental validation for a CO2 heat pump assisted by solar energy
author Humberto de Oliveira Reis
author_facet Humberto de Oliveira Reis
Tiago de Freitas Paulino
Luiz Machado
Willian Moreira Duarte
author_role author
author2 Tiago de Freitas Paulino
Luiz Machado
Willian Moreira Duarte
author2_role author
author
author
dc.contributor.author.fl_str_mv Humberto de Oliveira Reis
Tiago de Freitas Paulino
Luiz Machado
Willian Moreira Duarte
dc.subject.por.fl_str_mv DX-SAHP
Mathematical mode
Evaporator
topic DX-SAHP
Mathematical mode
Evaporator
Evaporadores
dc.subject.other.pt_BR.fl_str_mv Evaporadores
description A use of CO2 operating in a transcritical cycle has been proven for heat pumps is a demonstrably viable and considerably interesting option due to the environmental advantages of CO2 over other refrigerant gases. In order to improve the energy performance of systems that use heat pumps, integrating a type of energy such as renewable geothermal, solar, wind and bio-fuels must be available. In this scenario, a mathematical model with experimental validation of the components that allows the modeling of the heat pump system to vary the input parameters and determine the outlet water temperature and the coefficient of performance (COP) of the heat pump. This article approaches the modeling of the DX-SAHP, in order to obtain the profile of temperature and pressure distribution along the gas cooler, and the values of heat exchange and pressure in collector solar/evaporator. The model was validated with experimental data from 88 tests performed under different operating conditions, even the DX-SAHP in question. In the experimental the radiation incidence range in the study environment was from 0 to 845 W/m² and at an ambient temperature of 21°C to 33°C. The maximum difference between the theoretical results and experimental results was 9.5%.
publishDate 2022
dc.date.issued.fl_str_mv 2022
dc.date.accessioned.fl_str_mv 2023-09-07T00:24:57Z
dc.date.available.fl_str_mv 2023-09-07T00:24:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/58542
url http://hdl.handle.net/1843/58542
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Atribuição 3.0 Portugal
http://creativecommons.org/licenses/by/3.0/pt/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribuição 3.0 Portugal
http://creativecommons.org/licenses/by/3.0/pt/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.initials.fl_str_mv UFMG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ENG - DEPARTAMENTO DE ENGENHARIA MECÂNICA
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/58542/1/DISTRIBUTED%20MATHEMATICAL%20MODEL%20AND%20EXPERIMENTAL.pdf
https://repositorio.ufmg.br/bitstream/1843/58542/2/license_rdf
https://repositorio.ufmg.br/bitstream/1843/58542/3/license.txt
bitstream.checksum.fl_str_mv ad5b2c04894a7fd6a011c595a7a1c519
f9944a358a0c32770bd9bed185bb5395
cda590c95a0b51b4d15f60c9642ca272
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1803589431289970688