Fadiga e sonolência em aviadores: análise de variações da voz, fala e linguagem

Detalhes bibliográficos
Autor(a) principal: Carla Aparecida de Vasconcelos
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/33969
Resumo: Central human fatigue and sleepiness have aroused interest in aviation area worldwide. This is due to the number of accidents and the expressive involvement of human factors among the causes. In Brazil, according to CENIPA (Center for Research and Prevention of Aeronautical Accidents), the rate is 1 accident every 2 days and 90% are caused by human factors. According to NASA (National Aeronautics and Space Administration), fatigue/sleepiness would contribute to approximately 20% of air crashes in the world. But despite the risks that fatigue and sleepiness add to the safety, only 19 Brazilian aeronautical occurrences presented them as contributing factors. This is due to the absence of a methodology for detecting these signals/symptoms. In this sense, the objective of this study was to develop a method for detecting aviators human fatigue and sleepiness based on acoustic correlates of voice, speech and language. To this end, this research was subdivided into 5 substudies. In the first, speech samples from pilots complaining/suspected of fatigue/sleepiness were compared to a control group. The results were also compared to the Fatigue Avoidance Scheduling Tool (FAST). From the second to the fourth, the researchers analyzed 3 real cases of accident, with evidence of fatigue/sleepiness as contributing factors in 2 of these, and speech samples of pilots recorded before the accident were compared with those recorded during the crash. In the fifth, the aviators were screened through four fatigue/sleepiness scales (Karolinska Sleepiness Scale - KSS; Epworth Sleepiness Scale - ESS, Samn-Perelli Fatigue Scale - SPFS and Yoshitake Fatigue Scale - YFS) and speech evaluation was performed in two situations: on a day off when they were not complaining about sleepiness/fatigue and during a working day in which they were fatigued/sleepy. The data from the scales were statistically analyzed using the Friedman test (KSS and SPFS) and Wilcoxon test (ESS and YFS). It was observed that fatigue and sleepiness increased on the working day. For speech analysis, the paired GLM (General Linear Model) was used. Nine variables were extracted from speech: elocution rate, mean pause duration, total pause rate, fluent pause rate, disfluent pause rate, disfluent silent pause rate, disfluent filled pause rate, articulation rate and total silent pause rate. The first seven showed significant variation over time, when participants showed increased fatigue and sleepiness indexes. In addition, PCA (Principal Component Analysis) was applied to reduce the extracted variables to four. It was also found that it is possible to use Linear Discriminant Analysis (LDA) to group individuals and classify new cases (with or without fatigue and sleepiness) based on a database built for this purpose. There was quantitative and qualitative variation of voice, speech and language in the 2 out of the 3 cases where the accident occurred in the presence of signals of fatigue/sleepiness. In the first substudy, statistical and qualitative variations were also observed between the control group and the group with complaints. Through these studies, we found that the acoustic and perceptive parameters of voice, speech and language analyzed here are sufficiently robust to detect central fatigue and sleepiness.
id UFMG_8ef35d7c3378598d134929ee68ef8d8b
oai_identifier_str oai:repositorio.ufmg.br:1843/33969
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Fadiga e sonolência em aviadores: análise de variações da voz, fala e linguagemFatigue and sleepiness in aviators: analysis of voice, speech and language variationsNeurociênciasFadigaFadiga mentalSonolênciaQualidade da vozAcústica da falaMedida da produção da falaMedicinaFatigueMental fatigueSleepinessSpeech acousticsSpeech production measurementNeurociênciasFadigaFadiga mentalSonolênciaQualidade da vozAcústica da falaMedida da produção da falaMedicina aeroespacialCentral human fatigue and sleepiness have aroused interest in aviation area worldwide. This is due to the number of accidents and the expressive involvement of human factors among the causes. In Brazil, according to CENIPA (Center for Research and Prevention of Aeronautical Accidents), the rate is 1 accident every 2 days and 90% are caused by human factors. According to NASA (National Aeronautics and Space Administration), fatigue/sleepiness would contribute to approximately 20% of air crashes in the world. But despite the risks that fatigue and sleepiness add to the safety, only 19 Brazilian aeronautical occurrences presented them as contributing factors. This is due to the absence of a methodology for detecting these signals/symptoms. In this sense, the objective of this study was to develop a method for detecting aviators human fatigue and sleepiness based on acoustic correlates of voice, speech and language. To this end, this research was subdivided into 5 substudies. In the first, speech samples from pilots complaining/suspected of fatigue/sleepiness were compared to a control group. The results were also compared to the Fatigue Avoidance Scheduling Tool (FAST). From the second to the fourth, the researchers analyzed 3 real cases of accident, with evidence of fatigue/sleepiness as contributing factors in 2 of these, and speech samples of pilots recorded before the accident were compared with those recorded during the crash. In the fifth, the aviators were screened through four fatigue/sleepiness scales (Karolinska Sleepiness Scale - KSS; Epworth Sleepiness Scale - ESS, Samn-Perelli Fatigue Scale - SPFS and Yoshitake Fatigue Scale - YFS) and speech evaluation was performed in two situations: on a day off when they were not complaining about sleepiness/fatigue and during a working day in which they were fatigued/sleepy. The data from the scales were statistically analyzed using the Friedman test (KSS and SPFS) and Wilcoxon test (ESS and YFS). It was observed that fatigue and sleepiness increased on the working day. For speech analysis, the paired GLM (General Linear Model) was used. Nine variables were extracted from speech: elocution rate, mean pause duration, total pause rate, fluent pause rate, disfluent pause rate, disfluent silent pause rate, disfluent filled pause rate, articulation rate and total silent pause rate. The first seven showed significant variation over time, when participants showed increased fatigue and sleepiness indexes. In addition, PCA (Principal Component Analysis) was applied to reduce the extracted variables to four. It was also found that it is possible to use Linear Discriminant Analysis (LDA) to group individuals and classify new cases (with or without fatigue and sleepiness) based on a database built for this purpose. There was quantitative and qualitative variation of voice, speech and language in the 2 out of the 3 cases where the accident occurred in the presence of signals of fatigue/sleepiness. In the first substudy, statistical and qualitative variations were also observed between the control group and the group with complaints. Through these studies, we found that the acoustic and perceptive parameters of voice, speech and language analyzed here are sufficiently robust to detect central fatigue and sleepiness.A fadiga central e a sonolência têm despertado interesse na área da aviação mundialmente. Isso é devido ao número de acidentes e ao expressivo envolvimento dos fatores humanos entre as causas. No Brasil, de acordo com o CENIPA (Centro de Investigação e Prevenção de Acidentes Aeronáuticos), a taxa é de 1 acidente a cada 2 dias sendo 90% causados por fatores humanos. Segundo a NASA (National Aeronautics and Space Administration), a fadiga/sonolência contribuiria para 20% dos acidentes aéreos no mundo. Mas, apesar dos riscos que a fadiga e a sonolência agregam à segurança aérea, apenas 19 ocorrências aeronáuticas brasileiras apresentaram-nas como fatores contribuintes. Isso se deve à ausência de uma metodologia de detecção desses sinais/sintomas. Nesse sentido, o objetivo deste estudo foi desenvolver métodos para detecção da fadiga e da sonolência em aviadores baseado nos correlatos acústicos de voz, fala e linguagem. Para tanto, esta pesquisa foi subdividida em 5 subestudos. No primeiro, foram comparadas amostras de fala de pilotos com queixa/suspeita de fadiga/sonolência a um grupo controle e os resultados foram comparados também ao FAST (Fatigue Avoidance Scheduling Tool). Do segundo ao quarto, os pesquisadores analisaram 3 casos reais de acidente sendo que havia indício de fadiga/sonolência como fatores contribuintes em 2 desses, tendo sido comparadas amostras da fala dos pilotos gravadas antes do acidente com as gravadas durante. No quinto, os aviadores foram triados por meio de 4 escalas de fadiga e sonolência (Karolinska Sleepiness Scale - KSS; Epworth Sleepiness Scale – ESS, Samn-Perelli Fatigue Scale – SPFS e Yoshitake Fatigue Scale – YFS) e foi realizada avaliação de fala em duas situações: em dia de folga no qual estavam sem queixa de sonolência/fadiga e ao longo de um dia de trabalho no qual estavam fatigados/sonolentos. Os dados das escalas foram analisados estatisticamente por meio do teste de Friedman (KSS e SPFS) e Wilcoxon (ESS e YFS) sendo que se verificou aumento da fadiga e da sonolência no dia de trabalho. Para a análise da fala/linguagem, utilizou-se o GLM (General Linear Model) pareado. Nove variáveis foram extraídas da fala/linguagem: taxa de elocução, duração média das pausas, taxa total de pausas, taxa de pausas fluentes, taxa de pausas disfluentes, taxa de pausas silenciosas disfluentes, taxa de pausas preenchidas disfluentes, taxa de articulação e taxa total de pausas silenciosas. As sete primeiras apresentaram variação significativa ao longo do tempo, à medida que os participantes apresentaram aumento nos índices de fadiga e sonolência. Além disso, aplicou-se PCA (Principal Component Analysis), e verificou-se a possibilidade de redução das variáveis extraídas para 4. Verificou-se também que é possível o uso da LDA (Linear Discriminant Analysis) para agrupar os indivíduos e classificar novos casos (com ou sem fadiga e sonolência) baseados em banco de dados construído para tal. Observou-se variação quantitativa e qualitativa de voz, fala e linguagem em 2 dos 3 estudos de caso em que o acidente ocorreu na presença de indícios de fadiga/sonolência. No primeiro subestudo, também se observou variação estatística e qualitativa entre o grupo controle e o grupo com queixa. Por meio desses estudos desenvolvidos, constatamos que os parâmetros acústicos e perceptivos de voz, fala e linguagem aqui analisados são suficientemente robustos para a detecção da fadiga central e da sonolência.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal de Minas GeraisBrasilICB - INSTITUTO DE CIÊNCIAS BIOLOGICASPrograma de Pós-Graduação em NeurociênciasUFMGHani Camille Yehiahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4785031D7&tokenCaptchar=03AGdBq258lpeEFe_grlB4ra2dXlJBq6Xb3Tt17IjDVGjEtpT9N9-Q1IV_wRQXleb_BW8OrlgzG0Qp05X_qBy0el3U4cd2L9gSOIl4aBGGNYcBxUAZ7H7xxo31sDtBYv_57sVVSMmZOi81kGRX1BzSlLFocmQITkwVVVG2C3D2TlyNHi2p5namyfFTrvZvlIrC_YkNsvprOHlJ-HA2HvvIyyhaJj5qw1moIBbsgBdfdxZvMvLmP7LghTv5kUW5pS6Lv7GNmkclbnOAXZlikFvG7kEJnyKenTFkPuTzqR0s5OV5gd0lBTAwuGH7I5SO4dAklPHkbvuclqsVT8nZS2nA9opJ12HtbqVFSvp2qUuJE-nWygATCtGq-r9G-cMXJQh3lHOgxcwrtIUaNXoug9tbdOaf5hQlpgXyQVJoVW9qoQ-oNl0tVboVm104psZp__l3Lwnd2UBCFW9Zlk8smFyu3xkDkd6occu3BAMaurílio Nunes VieiraMaria Mendes CantoniCarmen Elvira Flores Mendoza PradoEmi Zuiki MuranoZuleica Antônia CamargoCarla Aparecida de Vasconcelos2020-08-12T14:45:34Z2020-08-12T14:45:34Z2019-12-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/1843/33969porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2020-08-12T14:45:34Zoai:repositorio.ufmg.br:1843/33969Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2020-08-12T14:45:34Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Fadiga e sonolência em aviadores: análise de variações da voz, fala e linguagem
Fatigue and sleepiness in aviators: analysis of voice, speech and language variations
title Fadiga e sonolência em aviadores: análise de variações da voz, fala e linguagem
spellingShingle Fadiga e sonolência em aviadores: análise de variações da voz, fala e linguagem
Carla Aparecida de Vasconcelos
Neurociências
Fadiga
Fadiga mental
Sonolência
Qualidade da voz
Acústica da fala
Medida da produção da fala
Medicina
Fatigue
Mental fatigue
Sleepiness
Speech acoustics
Speech production measurement
Neurociências
Fadiga
Fadiga mental
Sonolência
Qualidade da voz
Acústica da fala
Medida da produção da fala
Medicina aeroespacial
title_short Fadiga e sonolência em aviadores: análise de variações da voz, fala e linguagem
title_full Fadiga e sonolência em aviadores: análise de variações da voz, fala e linguagem
title_fullStr Fadiga e sonolência em aviadores: análise de variações da voz, fala e linguagem
title_full_unstemmed Fadiga e sonolência em aviadores: análise de variações da voz, fala e linguagem
title_sort Fadiga e sonolência em aviadores: análise de variações da voz, fala e linguagem
author Carla Aparecida de Vasconcelos
author_facet Carla Aparecida de Vasconcelos
author_role author
dc.contributor.none.fl_str_mv Hani Camille Yehia
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4785031D7&tokenCaptchar=03AGdBq258lpeEFe_grlB4ra2dXlJBq6Xb3Tt17IjDVGjEtpT9N9-Q1IV_wRQXleb_BW8OrlgzG0Qp05X_qBy0el3U4cd2L9gSOIl4aBGGNYcBxUAZ7H7xxo31sDtBYv_57sVVSMmZOi81kGRX1BzSlLFocmQITkwVVVG2C3D2TlyNHi2p5namyfFTrvZvlIrC_YkNsvprOHlJ-HA2HvvIyyhaJj5qw1moIBbsgBdfdxZvMvLmP7LghTv5kUW5pS6Lv7GNmkclbnOAXZlikFvG7kEJnyKenTFkPuTzqR0s5OV5gd0lBTAwuGH7I5SO4dAklPHkbvuclqsVT8nZS2nA9opJ12HtbqVFSvp2qUuJE-nWygATCtGq-r9G-cMXJQh3lHOgxcwrtIUaNXoug9tbdOaf5hQlpgXyQVJoVW9qoQ-oNl0tVboVm104psZp__l3Lwnd2UBCFW9Zlk8smFyu3xkDkd6occu3BA
Maurílio Nunes Vieira
Maria Mendes Cantoni
Carmen Elvira Flores Mendoza Prado
Emi Zuiki Murano
Zuleica Antônia Camargo
dc.contributor.author.fl_str_mv Carla Aparecida de Vasconcelos
dc.subject.por.fl_str_mv Neurociências
Fadiga
Fadiga mental
Sonolência
Qualidade da voz
Acústica da fala
Medida da produção da fala
Medicina
Fatigue
Mental fatigue
Sleepiness
Speech acoustics
Speech production measurement
Neurociências
Fadiga
Fadiga mental
Sonolência
Qualidade da voz
Acústica da fala
Medida da produção da fala
Medicina aeroespacial
topic Neurociências
Fadiga
Fadiga mental
Sonolência
Qualidade da voz
Acústica da fala
Medida da produção da fala
Medicina
Fatigue
Mental fatigue
Sleepiness
Speech acoustics
Speech production measurement
Neurociências
Fadiga
Fadiga mental
Sonolência
Qualidade da voz
Acústica da fala
Medida da produção da fala
Medicina aeroespacial
description Central human fatigue and sleepiness have aroused interest in aviation area worldwide. This is due to the number of accidents and the expressive involvement of human factors among the causes. In Brazil, according to CENIPA (Center for Research and Prevention of Aeronautical Accidents), the rate is 1 accident every 2 days and 90% are caused by human factors. According to NASA (National Aeronautics and Space Administration), fatigue/sleepiness would contribute to approximately 20% of air crashes in the world. But despite the risks that fatigue and sleepiness add to the safety, only 19 Brazilian aeronautical occurrences presented them as contributing factors. This is due to the absence of a methodology for detecting these signals/symptoms. In this sense, the objective of this study was to develop a method for detecting aviators human fatigue and sleepiness based on acoustic correlates of voice, speech and language. To this end, this research was subdivided into 5 substudies. In the first, speech samples from pilots complaining/suspected of fatigue/sleepiness were compared to a control group. The results were also compared to the Fatigue Avoidance Scheduling Tool (FAST). From the second to the fourth, the researchers analyzed 3 real cases of accident, with evidence of fatigue/sleepiness as contributing factors in 2 of these, and speech samples of pilots recorded before the accident were compared with those recorded during the crash. In the fifth, the aviators were screened through four fatigue/sleepiness scales (Karolinska Sleepiness Scale - KSS; Epworth Sleepiness Scale - ESS, Samn-Perelli Fatigue Scale - SPFS and Yoshitake Fatigue Scale - YFS) and speech evaluation was performed in two situations: on a day off when they were not complaining about sleepiness/fatigue and during a working day in which they were fatigued/sleepy. The data from the scales were statistically analyzed using the Friedman test (KSS and SPFS) and Wilcoxon test (ESS and YFS). It was observed that fatigue and sleepiness increased on the working day. For speech analysis, the paired GLM (General Linear Model) was used. Nine variables were extracted from speech: elocution rate, mean pause duration, total pause rate, fluent pause rate, disfluent pause rate, disfluent silent pause rate, disfluent filled pause rate, articulation rate and total silent pause rate. The first seven showed significant variation over time, when participants showed increased fatigue and sleepiness indexes. In addition, PCA (Principal Component Analysis) was applied to reduce the extracted variables to four. It was also found that it is possible to use Linear Discriminant Analysis (LDA) to group individuals and classify new cases (with or without fatigue and sleepiness) based on a database built for this purpose. There was quantitative and qualitative variation of voice, speech and language in the 2 out of the 3 cases where the accident occurred in the presence of signals of fatigue/sleepiness. In the first substudy, statistical and qualitative variations were also observed between the control group and the group with complaints. Through these studies, we found that the acoustic and perceptive parameters of voice, speech and language analyzed here are sufficiently robust to detect central fatigue and sleepiness.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-05
2020-08-12T14:45:34Z
2020-08-12T14:45:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/33969
url http://hdl.handle.net/1843/33969
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
Brasil
ICB - INSTITUTO DE CIÊNCIAS BIOLOGICAS
Programa de Pós-Graduação em Neurociências
UFMG
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
Brasil
ICB - INSTITUTO DE CIÊNCIAS BIOLOGICAS
Programa de Pós-Graduação em Neurociências
UFMG
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1816829808055681024