Vórtices helicoidais : modelo, aplicação e o problema do fator de ponta em hélices e turbinas eólicas

Detalhes bibliográficos
Autor(a) principal: Danilo César Rodrigues Azevedo
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/62633
Resumo: O método do vórtice helicoidal tem sido alvo de pesquisas principalmente devido ao crescimento do uso de energias limpas, em especial a energia eólica, por representar de forma confiável e robusta a esteira a jusante dos aerogeradores. O modelo tem origem no âmbito da aeronáutica ainda na década de 30, tendo sido pouco utilizado no projeto de hélices. Neste trabalho, o resgate deste método, bem como uma revisão das pesquisas sobre o tema foi realizada, permitindo-se a avaliação do método para o cálculo de desempenho de hélices e turbinas eólicas. O trabalho buscou validar a hipótese de que é possível mitigar erros de previsão de desempenho substituindo o uso de fatores de correção de ponta pelo cálculo efetivo das condições aerodinâmicas em cada posição ao longo da pá através do uso da técnica de vórtices helicoidais, retirando a consideração de elementos independentes, tais como as utilizadas nos métodos tradicionais baseados em Blade Element-Momentum (BEM). Uma metodologia de aplicação foi detalhada e validada através da determinação da distribuição de circulação para a eficiência ótima nos casos de um rotor com número infinito de pás e arrasto nulo; número infinito de pás na presença de arrasto; número de pás finitas e arrasto nulo; e, número de pás finitas na presença de arrasto. Ainda na etapa de validação do método, calculou-se o desempenho de um rotor previamente experimentado e apresentou-se resultados da otimização de parâmetros geométricos da pá para maximização da eficiência deste mesmo rotor. Um total de 27 casos para hélices foram avaliados, bem como 9 casos para turbinas eólicas. O presente método foi comparado com métodos tradicionais de aerodinâmica bem como com resultados de mecânica dos fluidos computacional, utilizando modelos κ − ω SST RANS. O presente método se mostrou capaz de prever os valores dos coeficientes e suas distribuições de maneira satisfatória com vantagens em relação ao demais métodos, pois evita erros e inconsistências relativas ao uso de funções de correção de ponta. Os valores dos coeficientes de tração e potência foram estimados com boa precisão, com erros entre a faixa de -2,5% e 6% para hélices e de 0,9% e 14,9%, para turbinas eólicas. Os resultados apontaram grande divergência na previsão das velocidades induzidas entre os métodos BEM e MVH devido aos desvios entre as previsões das funções de correção de efeitos de ponta e os valores calculados para o campo potencial devido à esteira helicoidal. Os resultados obtidos ratificam a inconsistência física dos modelos de correção de ponta reforçando a hipótese de que o cálculo do campo utilizando MVH é uma alternativa viável para projeto e análise de hélices e turbina eólicas.
id UFMG_96ade2d806e1d95a06d1a92209bb8dcd
oai_identifier_str oai:repositorio.ufmg.br:1843/62633
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Ricardo Luiz Utsch de Freitas Pintohttp://lattes.cnpq.br/8396069891881112Ricardo Poley Martins FerreiraPaulo Alexandre Costa RochaEduardo Bauzer MedeirosGuilherme de Souza PapinCarla Freitas de Andradehttp://lattes.cnpq.br/0436986621045068Danilo César Rodrigues Azevedo2024-01-11T18:24:09Z2024-01-11T18:24:09Z2023-11-07http://hdl.handle.net/1843/62633O método do vórtice helicoidal tem sido alvo de pesquisas principalmente devido ao crescimento do uso de energias limpas, em especial a energia eólica, por representar de forma confiável e robusta a esteira a jusante dos aerogeradores. O modelo tem origem no âmbito da aeronáutica ainda na década de 30, tendo sido pouco utilizado no projeto de hélices. Neste trabalho, o resgate deste método, bem como uma revisão das pesquisas sobre o tema foi realizada, permitindo-se a avaliação do método para o cálculo de desempenho de hélices e turbinas eólicas. O trabalho buscou validar a hipótese de que é possível mitigar erros de previsão de desempenho substituindo o uso de fatores de correção de ponta pelo cálculo efetivo das condições aerodinâmicas em cada posição ao longo da pá através do uso da técnica de vórtices helicoidais, retirando a consideração de elementos independentes, tais como as utilizadas nos métodos tradicionais baseados em Blade Element-Momentum (BEM). Uma metodologia de aplicação foi detalhada e validada através da determinação da distribuição de circulação para a eficiência ótima nos casos de um rotor com número infinito de pás e arrasto nulo; número infinito de pás na presença de arrasto; número de pás finitas e arrasto nulo; e, número de pás finitas na presença de arrasto. Ainda na etapa de validação do método, calculou-se o desempenho de um rotor previamente experimentado e apresentou-se resultados da otimização de parâmetros geométricos da pá para maximização da eficiência deste mesmo rotor. Um total de 27 casos para hélices foram avaliados, bem como 9 casos para turbinas eólicas. O presente método foi comparado com métodos tradicionais de aerodinâmica bem como com resultados de mecânica dos fluidos computacional, utilizando modelos κ − ω SST RANS. O presente método se mostrou capaz de prever os valores dos coeficientes e suas distribuições de maneira satisfatória com vantagens em relação ao demais métodos, pois evita erros e inconsistências relativas ao uso de funções de correção de ponta. Os valores dos coeficientes de tração e potência foram estimados com boa precisão, com erros entre a faixa de -2,5% e 6% para hélices e de 0,9% e 14,9%, para turbinas eólicas. Os resultados apontaram grande divergência na previsão das velocidades induzidas entre os métodos BEM e MVH devido aos desvios entre as previsões das funções de correção de efeitos de ponta e os valores calculados para o campo potencial devido à esteira helicoidal. Os resultados obtidos ratificam a inconsistência física dos modelos de correção de ponta reforçando a hipótese de que o cálculo do campo utilizando MVH é uma alternativa viável para projeto e análise de hélices e turbina eólicas.The helical vortex method has been research topic mainly due to the growth in the use of clean energy, especially wind energy, as it reliably and robustly represents the wake downstream of wind turbines. The model originated in aeronautics in the 1930s, having been little used in propeller design. In this work, revisiting this method, as well as a reviewing research on the subject was made, contributing to the methods evaluation for calculating the performance of propellers and wind turbines. The work sought to validate the hypothesis that it is possible to mitigate performance prediction errors by replacing the use of tip correction factors with the effective calculation of aerodynamic conditions at each position along the blade through the use of the helical vortex technique, removing the consideration of independent elements, such as those used in traditional methods based on Blade Element-Momentum (BEM). An application methodology was detailed and validated by determining the circulation distribution for optimal efficiency in cases of a rotor with an infinite number of blades and zero drag; infinite number of blades in the presence of drag; finite number of blades and zero drag; and, finite number of blades in the presence of drag. Still in the method validation stage, the performance of a previously tested rotor was calculated and results from the optimization of the blade’s geometric parameters were presented to maximize the efficiency of this same rotor. A total of 27 cases for propellers were evaluated, as well as 9 cases for wind turbines. The present method was compared with traditional aerodynamic methods as well as with computational fluid mechanics results, using κ − ω SST RANS models. The present method proved capable of predicting the values of the coefficients and their distributions in a satisfactory manner, with advantages over other methods, as it avoids errors and inconsistencies related to the use of tip correction functions. The values of the thrust and power coefficients were estimated with good precision, with errors between the range of -2.5% and 6% for propellers and 0.9% and 14.9% for wind turbines. The results showed a large divergence in the prediction of induced velocities between the BEM and MVH methods due to the deviations between the tip effect correction functions predictions and the values calculated for the potential field due to the helical wake. The results obtained confirm the physical tip correction models inconsistency, reinforcing the hypothesis that the field calculation using MVH is a viable alternative for the design and analysis of propellers and wind turbines.porUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em Engenharia MecanicaUFMGBrasilENG - DEPARTAMENTO DE ENGENHARIA MECÂNICAEngenharia mecânicaHélicesTurbinasEnergia eólicaAerodinâmicaMétodos de simulaçãoVórtice helicoidaisHélicesTurbinas eólicasAerodinâmicaMétodos computacionaisVórtices helicoidais : modelo, aplicação e o problema do fator de ponta em hélices e turbinas eólicasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALTese - DaniloAzevedo.pdfTese - DaniloAzevedo.pdfapplication/pdf6822993https://repositorio.ufmg.br/bitstream/1843/62633/1/Tese%20-%20DaniloAzevedo.pdfa8945418cee30153cb0992f7ba30220aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82118https://repositorio.ufmg.br/bitstream/1843/62633/2/license.txtcda590c95a0b51b4d15f60c9642ca272MD521843/626332024-01-11 15:24:09.908oai:repositorio.ufmg.br:1843/62633TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2024-01-11T18:24:09Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv Vórtices helicoidais : modelo, aplicação e o problema do fator de ponta em hélices e turbinas eólicas
title Vórtices helicoidais : modelo, aplicação e o problema do fator de ponta em hélices e turbinas eólicas
spellingShingle Vórtices helicoidais : modelo, aplicação e o problema do fator de ponta em hélices e turbinas eólicas
Danilo César Rodrigues Azevedo
Vórtice helicoidais
Hélices
Turbinas eólicas
Aerodinâmica
Métodos computacionais
Engenharia mecânica
Hélices
Turbinas
Energia eólica
Aerodinâmica
Métodos de simulação
title_short Vórtices helicoidais : modelo, aplicação e o problema do fator de ponta em hélices e turbinas eólicas
title_full Vórtices helicoidais : modelo, aplicação e o problema do fator de ponta em hélices e turbinas eólicas
title_fullStr Vórtices helicoidais : modelo, aplicação e o problema do fator de ponta em hélices e turbinas eólicas
title_full_unstemmed Vórtices helicoidais : modelo, aplicação e o problema do fator de ponta em hélices e turbinas eólicas
title_sort Vórtices helicoidais : modelo, aplicação e o problema do fator de ponta em hélices e turbinas eólicas
author Danilo César Rodrigues Azevedo
author_facet Danilo César Rodrigues Azevedo
author_role author
dc.contributor.advisor1.fl_str_mv Ricardo Luiz Utsch de Freitas Pinto
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8396069891881112
dc.contributor.referee1.fl_str_mv Ricardo Poley Martins Ferreira
dc.contributor.referee2.fl_str_mv Paulo Alexandre Costa Rocha
dc.contributor.referee3.fl_str_mv Eduardo Bauzer Medeiros
dc.contributor.referee4.fl_str_mv Guilherme de Souza Papin
dc.contributor.referee5.fl_str_mv Carla Freitas de Andrade
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0436986621045068
dc.contributor.author.fl_str_mv Danilo César Rodrigues Azevedo
contributor_str_mv Ricardo Luiz Utsch de Freitas Pinto
Ricardo Poley Martins Ferreira
Paulo Alexandre Costa Rocha
Eduardo Bauzer Medeiros
Guilherme de Souza Papin
Carla Freitas de Andrade
dc.subject.por.fl_str_mv Vórtice helicoidais
Hélices
Turbinas eólicas
Aerodinâmica
Métodos computacionais
topic Vórtice helicoidais
Hélices
Turbinas eólicas
Aerodinâmica
Métodos computacionais
Engenharia mecânica
Hélices
Turbinas
Energia eólica
Aerodinâmica
Métodos de simulação
dc.subject.other.pt_BR.fl_str_mv Engenharia mecânica
Hélices
Turbinas
Energia eólica
Aerodinâmica
Métodos de simulação
description O método do vórtice helicoidal tem sido alvo de pesquisas principalmente devido ao crescimento do uso de energias limpas, em especial a energia eólica, por representar de forma confiável e robusta a esteira a jusante dos aerogeradores. O modelo tem origem no âmbito da aeronáutica ainda na década de 30, tendo sido pouco utilizado no projeto de hélices. Neste trabalho, o resgate deste método, bem como uma revisão das pesquisas sobre o tema foi realizada, permitindo-se a avaliação do método para o cálculo de desempenho de hélices e turbinas eólicas. O trabalho buscou validar a hipótese de que é possível mitigar erros de previsão de desempenho substituindo o uso de fatores de correção de ponta pelo cálculo efetivo das condições aerodinâmicas em cada posição ao longo da pá através do uso da técnica de vórtices helicoidais, retirando a consideração de elementos independentes, tais como as utilizadas nos métodos tradicionais baseados em Blade Element-Momentum (BEM). Uma metodologia de aplicação foi detalhada e validada através da determinação da distribuição de circulação para a eficiência ótima nos casos de um rotor com número infinito de pás e arrasto nulo; número infinito de pás na presença de arrasto; número de pás finitas e arrasto nulo; e, número de pás finitas na presença de arrasto. Ainda na etapa de validação do método, calculou-se o desempenho de um rotor previamente experimentado e apresentou-se resultados da otimização de parâmetros geométricos da pá para maximização da eficiência deste mesmo rotor. Um total de 27 casos para hélices foram avaliados, bem como 9 casos para turbinas eólicas. O presente método foi comparado com métodos tradicionais de aerodinâmica bem como com resultados de mecânica dos fluidos computacional, utilizando modelos κ − ω SST RANS. O presente método se mostrou capaz de prever os valores dos coeficientes e suas distribuições de maneira satisfatória com vantagens em relação ao demais métodos, pois evita erros e inconsistências relativas ao uso de funções de correção de ponta. Os valores dos coeficientes de tração e potência foram estimados com boa precisão, com erros entre a faixa de -2,5% e 6% para hélices e de 0,9% e 14,9%, para turbinas eólicas. Os resultados apontaram grande divergência na previsão das velocidades induzidas entre os métodos BEM e MVH devido aos desvios entre as previsões das funções de correção de efeitos de ponta e os valores calculados para o campo potencial devido à esteira helicoidal. Os resultados obtidos ratificam a inconsistência física dos modelos de correção de ponta reforçando a hipótese de que o cálculo do campo utilizando MVH é uma alternativa viável para projeto e análise de hélices e turbina eólicas.
publishDate 2023
dc.date.issued.fl_str_mv 2023-11-07
dc.date.accessioned.fl_str_mv 2024-01-11T18:24:09Z
dc.date.available.fl_str_mv 2024-01-11T18:24:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/62633
url http://hdl.handle.net/1843/62633
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Mecanica
dc.publisher.initials.fl_str_mv UFMG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ENG - DEPARTAMENTO DE ENGENHARIA MECÂNICA
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/62633/1/Tese%20-%20DaniloAzevedo.pdf
https://repositorio.ufmg.br/bitstream/1843/62633/2/license.txt
bitstream.checksum.fl_str_mv a8945418cee30153cb0992f7ba30220a
cda590c95a0b51b4d15f60c9642ca272
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1803589243918876672