Random walk on the zero-range process

Detalhes bibliográficos
Autor(a) principal: Weberson da Silva Arcanjo
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/50995
https://orcid.org/0000-0003-4875-3805
Resumo: The main theme of this thesis is the study of random walks in random environments. More specifically, we will study a random walk that moves in a medium that is inhomogeneous in $\mathbb{Z}$ and evolves with time, called dynamic random environment. In this case, the environment will be an interacting particle system in $\mathbb{Z}$ known as the zero-range process. This name comes from the fact that, in this system, particles interact with each other only when they share the same site. We will denote this process by $\eta=(\eta_{t})_{t\geq 0}$. We will assume that this process is in equilibrium. We say that site $x \in \mathbb{Z}$ is occupied by particles at time $t$ if $\eta_{t}(x)>0$ and othewise, we say that $x$ is vacant. Let $\alpha_{\bullet}, \beta_{\bullet}, \alpha_{\circ}$ and $\beta_{\circ}$ be positive real numbers. On $\eta$ we define a continuous-time, nearest-neighbor random walk $X=(X_t)_{t \geq 0}$, that starts at the origin and evolves as follows: when $X$ is on a site occupied by particles, it jumps to the right with a rate $\alpha_{\bullet}$ and to the left with a rate $\beta_{\bullet}$; when $X$ is on a vacant site, these rates are respectively $\alpha_{\circ}$ and $\beta_{\circ}$. Here, the random walk does not interfere with the evolution of the environment. We will study the asymptotic behavior of this random walk in time in the case where $X$ has a positive local drift to the right. More precisely, assuming that the differences $\alpha_{\bullet}-\beta_{\bullet}$ and $\alpha_{\circ}-\beta_{\circ}$ are sufficiently large, we will obtain a law of large numbers for $X $. That is, we will show that $X_t/t$ converges almost surely to a value $v$, which depends of the density of particles of the environment. Random walks in dynamic random environments given by interacting particle system have attracted a lot of interest in the last two decades. Several techniques have been developed and used to obtain refined results about these processes such as laws of large numbers, central limit theorems, invariance principles and large deviation estimates. Some of these techniques are regeneration, analytical techniques and multiscale renormalization. The applicability of each of the techniques and the range of results depend on the mixing properties of the environment. In this context, conservative particle systems such as the exclusion process, independent random walks and the zero-range process have drawn much attention due to the lack of good mixing properties. Thus, we hope that the results in this thesis contribute on the mathematical understanding of these processes.
id UFMG_9b4cb1209aebcd1723cb3c2afefddef3
oai_identifier_str oai:repositorio.ufmg.br:1843/50995
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Marcelo Richard Hiláriohttp://lattes.cnpq.br/2075091409733505Renato Soares dos SantosAugusto TeixeiraBernardo Nunes Borges de LimaLuca AvenaTertuliano FrancoRangel Baldassohttp://lattes.cnpq.br/2271787950677680Weberson da Silva Arcanjo2023-03-17T15:54:32Z2023-03-17T15:54:32Z2022-03-11http://hdl.handle.net/1843/50995https://orcid.org/0000-0003-4875-3805The main theme of this thesis is the study of random walks in random environments. More specifically, we will study a random walk that moves in a medium that is inhomogeneous in $\mathbb{Z}$ and evolves with time, called dynamic random environment. In this case, the environment will be an interacting particle system in $\mathbb{Z}$ known as the zero-range process. This name comes from the fact that, in this system, particles interact with each other only when they share the same site. We will denote this process by $\eta=(\eta_{t})_{t\geq 0}$. We will assume that this process is in equilibrium. We say that site $x \in \mathbb{Z}$ is occupied by particles at time $t$ if $\eta_{t}(x)>0$ and othewise, we say that $x$ is vacant. Let $\alpha_{\bullet}, \beta_{\bullet}, \alpha_{\circ}$ and $\beta_{\circ}$ be positive real numbers. On $\eta$ we define a continuous-time, nearest-neighbor random walk $X=(X_t)_{t \geq 0}$, that starts at the origin and evolves as follows: when $X$ is on a site occupied by particles, it jumps to the right with a rate $\alpha_{\bullet}$ and to the left with a rate $\beta_{\bullet}$; when $X$ is on a vacant site, these rates are respectively $\alpha_{\circ}$ and $\beta_{\circ}$. Here, the random walk does not interfere with the evolution of the environment. We will study the asymptotic behavior of this random walk in time in the case where $X$ has a positive local drift to the right. More precisely, assuming that the differences $\alpha_{\bullet}-\beta_{\bullet}$ and $\alpha_{\circ}-\beta_{\circ}$ are sufficiently large, we will obtain a law of large numbers for $X $. That is, we will show that $X_t/t$ converges almost surely to a value $v$, which depends of the density of particles of the environment. Random walks in dynamic random environments given by interacting particle system have attracted a lot of interest in the last two decades. Several techniques have been developed and used to obtain refined results about these processes such as laws of large numbers, central limit theorems, invariance principles and large deviation estimates. Some of these techniques are regeneration, analytical techniques and multiscale renormalization. The applicability of each of the techniques and the range of results depend on the mixing properties of the environment. In this context, conservative particle systems such as the exclusion process, independent random walks and the zero-range process have drawn much attention due to the lack of good mixing properties. Thus, we hope that the results in this thesis contribute on the mathematical understanding of these processes.O tema principal desta tese é o estudo de passeios aleatórios em ambientes aleatórios. Mais especificamente, estudaremos um passeio aleatório que se move em um meio que é não-homogêneo em $\mathbb{Z}$ e se modifica ao longo do tempo, denominado ambiente aleatório dinâmico. Neste caso, o ambiente será um sistema de partículas interagentes em $\mathbb{Z}$ conhecido como processo \textit{zero-range}. O nome vem do fato de que, nesse sistema, as partículas interagem umas com as outras somente quando estão no mesmo sítio. Denotaremos este processo por $\eta=(\eta_{t})_{t \geq 0}$. Vamos assumir que o ambiente esteja em equilíbrio. Diremos que o sítio $x \in \mathbb{Z}$ está ocupado por partículas no tempo $t$ se $\eta_{t}(x)>0$ e, caso contrário, diremos que $x$ está vacante. Sejam $\alpha_{\bullet}, \beta_{\bullet}, \alpha_{\circ}$ e $\beta_{\circ}$ números reais positivos. Sobre $\eta$ definimos um passeio \linebreak aleatório $X=(X_t)_{t \geq 0}$, a tempo contínuo e com saltos de primeiros vizinhos, que começa na origem e evolui da seguinte maneira: quando $X$ se encontra sobre um sítio ocupado por partículas, ele salta para a direita com uma taxa $\alpha_{\bullet}$ e para a esquerda com uma taxa $\beta_{\bullet}$; quando $X$ está sobre um sítio vacante, essas taxas são respectivamente $\alpha_{\circ}$ e $\beta_{\circ}$. Aqui, o passeio aleatório não interfere na evolução do ambiente. Estudaremos o comportamento assintótico deste passeio aleatório ao longo do tempo no caso em que $X$ possui um \textit{drift} local positivo para a direita. Mais precisamente, supondo que as diferenças $\alpha_{\bullet}-\beta_{\bullet}$ e $\alpha_{\circ}-\beta_{\circ}$ sejam suficientemente grandes, obteremos uma lei dos grandes números para $X$. Isto é, mostraremos que $X_t/t$ converge quase certamente para um valor $v$, que depende da densidade de partículas do ambiente. Passeios aleatórios em ambientes aleatórios dinâmicos dados por sistema de partículas interagentes têm atraído bastante interesse nas últimas duas décadas. Várias técnicas foram desenvolvidas e usadas para obter resultados refinados sobre esses processos como leis dos grandes números, teoremas centrais do limite, princípios de invariância e estimativas de grandes desvios. Algumas dessas técnicas são regeneração, técnicas analíticas e renormalização em multi-escala. A aplicabilidade de cada uma das técnicas e o alcance dos resultados dependem das propriedades de mistura (mixing) do ambiente. Neste contexto, sistemas de partículas conservativos como o processo de exclusão, passeios aleatórios independentes e o processo zero-range atraíram muita atenção devido à falta de boas propriedades de mistura. Assim, esperamos que os resultados nesta tese contribuam para a compreensão matemática desses processos.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorengUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em MatemáticaUFMGBrasilICX - DEPARTAMENTO DE MATEMÁTICAMatemática – TesesPasseio aleatório (Matemática) – TesesLei dos Grandes Números – TesesRandom WalkZero-RangeLaw of Large NumbersRandom walk on the zero-range processinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALTeseWeb.pdfTeseWeb.pdfapplication/pdf1383387https://repositorio.ufmg.br/bitstream/1843/50995/3/TeseWeb.pdf2eadb31f055c8d93615ca8453941da92MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82118https://repositorio.ufmg.br/bitstream/1843/50995/4/license.txtcda590c95a0b51b4d15f60c9642ca272MD541843/509952023-03-17 12:54:33.226oai:repositorio.ufmg.br:1843/50995TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2023-03-17T15:54:33Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv Random walk on the zero-range process
title Random walk on the zero-range process
spellingShingle Random walk on the zero-range process
Weberson da Silva Arcanjo
Random Walk
Zero-Range
Law of Large Numbers
Matemática – Teses
Passeio aleatório (Matemática) – Teses
Lei dos Grandes Números – Teses
title_short Random walk on the zero-range process
title_full Random walk on the zero-range process
title_fullStr Random walk on the zero-range process
title_full_unstemmed Random walk on the zero-range process
title_sort Random walk on the zero-range process
author Weberson da Silva Arcanjo
author_facet Weberson da Silva Arcanjo
author_role author
dc.contributor.advisor1.fl_str_mv Marcelo Richard Hilário
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2075091409733505
dc.contributor.advisor-co1.fl_str_mv Renato Soares dos Santos
dc.contributor.referee1.fl_str_mv Augusto Teixeira
dc.contributor.referee2.fl_str_mv Bernardo Nunes Borges de Lima
dc.contributor.referee3.fl_str_mv Luca Avena
dc.contributor.referee4.fl_str_mv Tertuliano Franco
dc.contributor.referee5.fl_str_mv Rangel Baldasso
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/2271787950677680
dc.contributor.author.fl_str_mv Weberson da Silva Arcanjo
contributor_str_mv Marcelo Richard Hilário
Renato Soares dos Santos
Augusto Teixeira
Bernardo Nunes Borges de Lima
Luca Avena
Tertuliano Franco
Rangel Baldasso
dc.subject.por.fl_str_mv Random Walk
Zero-Range
Law of Large Numbers
topic Random Walk
Zero-Range
Law of Large Numbers
Matemática – Teses
Passeio aleatório (Matemática) – Teses
Lei dos Grandes Números – Teses
dc.subject.other.pt_BR.fl_str_mv Matemática – Teses
Passeio aleatório (Matemática) – Teses
Lei dos Grandes Números – Teses
description The main theme of this thesis is the study of random walks in random environments. More specifically, we will study a random walk that moves in a medium that is inhomogeneous in $\mathbb{Z}$ and evolves with time, called dynamic random environment. In this case, the environment will be an interacting particle system in $\mathbb{Z}$ known as the zero-range process. This name comes from the fact that, in this system, particles interact with each other only when they share the same site. We will denote this process by $\eta=(\eta_{t})_{t\geq 0}$. We will assume that this process is in equilibrium. We say that site $x \in \mathbb{Z}$ is occupied by particles at time $t$ if $\eta_{t}(x)>0$ and othewise, we say that $x$ is vacant. Let $\alpha_{\bullet}, \beta_{\bullet}, \alpha_{\circ}$ and $\beta_{\circ}$ be positive real numbers. On $\eta$ we define a continuous-time, nearest-neighbor random walk $X=(X_t)_{t \geq 0}$, that starts at the origin and evolves as follows: when $X$ is on a site occupied by particles, it jumps to the right with a rate $\alpha_{\bullet}$ and to the left with a rate $\beta_{\bullet}$; when $X$ is on a vacant site, these rates are respectively $\alpha_{\circ}$ and $\beta_{\circ}$. Here, the random walk does not interfere with the evolution of the environment. We will study the asymptotic behavior of this random walk in time in the case where $X$ has a positive local drift to the right. More precisely, assuming that the differences $\alpha_{\bullet}-\beta_{\bullet}$ and $\alpha_{\circ}-\beta_{\circ}$ are sufficiently large, we will obtain a law of large numbers for $X $. That is, we will show that $X_t/t$ converges almost surely to a value $v$, which depends of the density of particles of the environment. Random walks in dynamic random environments given by interacting particle system have attracted a lot of interest in the last two decades. Several techniques have been developed and used to obtain refined results about these processes such as laws of large numbers, central limit theorems, invariance principles and large deviation estimates. Some of these techniques are regeneration, analytical techniques and multiscale renormalization. The applicability of each of the techniques and the range of results depend on the mixing properties of the environment. In this context, conservative particle systems such as the exclusion process, independent random walks and the zero-range process have drawn much attention due to the lack of good mixing properties. Thus, we hope that the results in this thesis contribute on the mathematical understanding of these processes.
publishDate 2022
dc.date.issued.fl_str_mv 2022-03-11
dc.date.accessioned.fl_str_mv 2023-03-17T15:54:32Z
dc.date.available.fl_str_mv 2023-03-17T15:54:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/50995
dc.identifier.orcid.pt_BR.fl_str_mv https://orcid.org/0000-0003-4875-3805
url http://hdl.handle.net/1843/50995
https://orcid.org/0000-0003-4875-3805
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Matemática
dc.publisher.initials.fl_str_mv UFMG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ICX - DEPARTAMENTO DE MATEMÁTICA
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/50995/3/TeseWeb.pdf
https://repositorio.ufmg.br/bitstream/1843/50995/4/license.txt
bitstream.checksum.fl_str_mv 2eadb31f055c8d93615ca8453941da92
cda590c95a0b51b4d15f60c9642ca272
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1803589219742908416