Dosimetry of brachytherapy using radioactive nanoparticles: in silico

Detalhes bibliográficos
Autor(a) principal: Baljeet Seniwal
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/36710
https://orcid.org/0000-0001-8250-5982
Resumo: Radioactive nanoparticles (radio-NPs) functionalized with tumor specific biomolecules, injected intratumorally, have been reported as an alternative to low dose rate (LDR) seed based brachytherapy (BT). In radiation based cancer treatments accurate estimation of absorbed dose is crucial for proper disease control and to minimize the risk of radiation induced side effects. Currently, used Medical Internal Radiation Dose (MIRD) formalism for internal dosimetry purposes do not consider the impact of uptake and washout of radiopharmaceutical on the cell survival fraction (SF) and absorbed dose estimation. The single cell dosimetry (SCD), based on MIRD formalism, is generally used to evaluate the dosimetric characteristics of radionuclides for theranostic applications. However, there exists discrepancies in the graphical methods and radial energy distribution, used to estimate the dose distribution. Moreover, precise modeling of radiation transport in the medium by Monte Carlo (MC) codes plays a pivotal role in the estimation of absorbed dose. The dose point kernel (DPK) are used to: (i) test the accuracy of different Monte Carlo (MC) codes, by performing comparison in terms of DPK; and (ii) estimate 3D-absorbed dose in nuclear medicine. However, as per our knowledge the impact differences in DPK on absorbed dose was not investigated. This PhD project aims to perform dosimetry of LDR BT applications, using radio-NPs, and fill the above mentioned gaps in literature using MC methods. The dosimetric calculations were performed using two widely used MC codes: Geant4-DNA and EGSnrc. Initially, the comparison in terms of DPK for electrons in energy range of 1 keV to 3 MeV was made to test the accuracy of both codes. After validation, SCD approach was used to evaluate the dosimetric characteristics of 12 alpha/beta/auger emitting radionuclides for theranostic applications. The concept of radial dose function was also proposed for graphical representation of dose distribution. Further, the cell survival curves published in literature were replicated using the mathematical model proposed by Sefl et al. 2016. Our findings show that, both Geant4-DNA and EGSnrc can accurately simulate the transport of low energy electrons with respect to other MC codes. Moreover, the largest differences between DPKs were found for electron energies below 10 keV, which resulted in inhomogeneous dose distribution in micrometer and no impact on millimeter sized voxels. The alpha emitters were found to deposit highest absorbed dose in comparison to auger and beta emitters. Furthermore, we effectively replicated the cell survival curves published in literature on the use of radio-NPs for LDR BT applications. It was concluded that the accuracy of the MC codes and MC parameters must be validated and benchmarked before using them for dosimetry purposes. Also, the accurate knowledge of uptake rate, washout rate of NPs, radio-sensitivity and tumour repopulation rate is important for the calculation of cell survival curves.
id UFMG_b01620482829d9fa5c971c82512f831b
oai_identifier_str oai:repositorio.ufmg.br:1843/36710
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Telma Cristina Ferreira Fonsecahttp://lattes.cnpq.br/3139727297057976Jan SchuemannTarcísio Passos Ribeiro de CamposRalph Santos OliveiraBruno Melo MendesLucas Freitas de FreitasLuc Beaulieuhttp://lattes.cnpq.br/8256803192379960Baljeet Seniwal2021-07-12T17:16:33Z2021-07-12T17:16:33Z2021-05-10http://hdl.handle.net/1843/36710https://orcid.org/0000-0001-8250-5982Radioactive nanoparticles (radio-NPs) functionalized with tumor specific biomolecules, injected intratumorally, have been reported as an alternative to low dose rate (LDR) seed based brachytherapy (BT). In radiation based cancer treatments accurate estimation of absorbed dose is crucial for proper disease control and to minimize the risk of radiation induced side effects. Currently, used Medical Internal Radiation Dose (MIRD) formalism for internal dosimetry purposes do not consider the impact of uptake and washout of radiopharmaceutical on the cell survival fraction (SF) and absorbed dose estimation. The single cell dosimetry (SCD), based on MIRD formalism, is generally used to evaluate the dosimetric characteristics of radionuclides for theranostic applications. However, there exists discrepancies in the graphical methods and radial energy distribution, used to estimate the dose distribution. Moreover, precise modeling of radiation transport in the medium by Monte Carlo (MC) codes plays a pivotal role in the estimation of absorbed dose. The dose point kernel (DPK) are used to: (i) test the accuracy of different Monte Carlo (MC) codes, by performing comparison in terms of DPK; and (ii) estimate 3D-absorbed dose in nuclear medicine. However, as per our knowledge the impact differences in DPK on absorbed dose was not investigated. This PhD project aims to perform dosimetry of LDR BT applications, using radio-NPs, and fill the above mentioned gaps in literature using MC methods. The dosimetric calculations were performed using two widely used MC codes: Geant4-DNA and EGSnrc. Initially, the comparison in terms of DPK for electrons in energy range of 1 keV to 3 MeV was made to test the accuracy of both codes. After validation, SCD approach was used to evaluate the dosimetric characteristics of 12 alpha/beta/auger emitting radionuclides for theranostic applications. The concept of radial dose function was also proposed for graphical representation of dose distribution. Further, the cell survival curves published in literature were replicated using the mathematical model proposed by Sefl et al. 2016. Our findings show that, both Geant4-DNA and EGSnrc can accurately simulate the transport of low energy electrons with respect to other MC codes. Moreover, the largest differences between DPKs were found for electron energies below 10 keV, which resulted in inhomogeneous dose distribution in micrometer and no impact on millimeter sized voxels. The alpha emitters were found to deposit highest absorbed dose in comparison to auger and beta emitters. Furthermore, we effectively replicated the cell survival curves published in literature on the use of radio-NPs for LDR BT applications. It was concluded that the accuracy of the MC codes and MC parameters must be validated and benchmarked before using them for dosimetry purposes. Also, the accurate knowledge of uptake rate, washout rate of NPs, radio-sensitivity and tumour repopulation rate is important for the calculation of cell survival curves.Nanopartículas radioativas (radio-NPs) funcionalizadas com biomoléculas específicas do tumor, injetadas de forma intratumoral, têm sido relatadas como uma alternativa à braquiterapia à base de sementes (LDR) de baixa taxa de dose (LDR). Em tratamentos de câncer à base de radiação a estimativa precisa da dose absorvida é crucial para o controle adequado da doença e para minimizar o risco de efeitos colaterais induzidos por radiação. Atualmente, o formalismo da Dose de Radiação Interna Médica (MIRD) usado para fins de dosimetria interna não considera o impacto da absorção e lavagem de radiofarmacêuticos na fração de sobrevivência celular (FS) e estimativa de dose absorvida. A dosimetria celular única (SCD), baseada no formalismo MIRD, é geralmente usada para avaliar as características dosimétricas dos radionuclídeos para aplicações teranósticas. No entanto, existem discrepâncias nos métodos gráficos e na distribuição de energia radial, utilizadas para estimar a distribuição da dose. Além disso, a modelagem precisa do transporte de radiação no meio pelos códigos de Monte Carlo (MC) desempenha um papel fundamental na estimativa da dose absorvida. O núcleo de ponto de dose (DPK) é usado para: (i) testar a precisão de diferentes códigos de Monte Carlo (MC), realizando comparação em termos de DPK; e (ii) estimam a dose absorvida por 3D na medicina nuclear. No entanto, pelo que sabemos, não foram investigadas as diferenças de impacto na DPK na dose absorvida. Este projeto de doutorado tem como objetivo realizar a dosimetria de aplicações LDR BT, utilizando radio-NPs, e preencher as lacunas acima mencionadas na literatura usando métodos de Monte Carlo (MC). Os cálculos dosimétricos foram realizados utilizando-se dois códigos MC amplamente utilizados: Geant4-DNA e EGSnrc. Inicialmente, a comparação em termos de DPK para elétrons na faixa de energia de 1 keV a 3 MeV foram realizadas para testar a precisão de ambos os códigos. Após a validação, utilizou-se a abordagem SCD para avaliar as características dosimétricas de emissão dos radionuclídeos de 12 alfa/beta/auger para aplicações teranósticas. Também foi proposto o conceito de função de dose radial para representação gráfica da distribuição de doses. Além disso, as curvas de sobrevivência celular publicadas na literatura foram replicadas utilizando-se o modelo matemático proposto por Sefl et al. 2016. O nosso trabalho apresenta que, tanto o Geant4-DNA quanto o EGSnrc podem simular com precisão o transporte de elétrons de baixa energia em relação a outros códigos MC. Além disso, as maiores diferenças entre as DPKs foram encontradas para energias eletrônicas abaixo de 10 keV, o que resultou na distribuição de dose homogênea em micrômetros e sem impacto em voxels em tamanhos milimétricos. Os emissores alfas foram encontrados para depositar a dose mais alta absorvida em comparação com os emissores auger e beta. Além disso, replicamos efetivamente as curvas de sobrevivência celular publicadas na literatura sobre o uso de radio-NPs para aplicações LDR BT. Concluiu-se que a precisão dos códigos MC e parâmetros MC deve ser validada e referenciada antes de usá-los para fins de dosimetria. Além disso, o conhecimento preciso da taxa de absorção, taxa de lavagem de NPs, radio-sensibilidade e taxa de repopulação de tumores é importante para o cálculo das curvas de sobrevivência celular. Keywords: Braquiterapia LDR, nanopartículas radioativas, núcleos de ponto de dose, métodos de Monte Carlo.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorengUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em Ciências e Técnicas NuclearesUFMGBrasilENG - DEPARTAMENTO DE ENGENHARIA NUCLEAREngenharia nuclearBraquiterapiaMétodo de Monte CarloLDR brachytherapyRadioactive nanoparticlesDose point kernelsMonte Carlo methodsDosimetry of brachytherapy using radioactive nanoparticles: in silicoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGLICENSElicense.txtlicense.txttext/plain; charset=utf-82118https://repositorio.ufmg.br/bitstream/1843/36710/2/license.txtcda590c95a0b51b4d15f60c9642ca272MD52ORIGINALThesis_Baljeet.pdfThesis_Baljeet.pdfapplication/pdf9390827https://repositorio.ufmg.br/bitstream/1843/36710/1/Thesis_Baljeet.pdf032e1a1f89c845e5bc62ef1133fd4b0fMD511843/367102021-07-12 14:16:33.217oai:repositorio.ufmg.br:1843/36710TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2021-07-12T17:16:33Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv Dosimetry of brachytherapy using radioactive nanoparticles: in silico
title Dosimetry of brachytherapy using radioactive nanoparticles: in silico
spellingShingle Dosimetry of brachytherapy using radioactive nanoparticles: in silico
Baljeet Seniwal
LDR brachytherapy
Radioactive nanoparticles
Dose point kernels
Monte Carlo methods
Engenharia nuclear
Braquiterapia
Método de Monte Carlo
title_short Dosimetry of brachytherapy using radioactive nanoparticles: in silico
title_full Dosimetry of brachytherapy using radioactive nanoparticles: in silico
title_fullStr Dosimetry of brachytherapy using radioactive nanoparticles: in silico
title_full_unstemmed Dosimetry of brachytherapy using radioactive nanoparticles: in silico
title_sort Dosimetry of brachytherapy using radioactive nanoparticles: in silico
author Baljeet Seniwal
author_facet Baljeet Seniwal
author_role author
dc.contributor.advisor1.fl_str_mv Telma Cristina Ferreira Fonseca
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3139727297057976
dc.contributor.advisor-co1.fl_str_mv Jan Schuemann
dc.contributor.referee1.fl_str_mv Tarcísio Passos Ribeiro de Campos
dc.contributor.referee2.fl_str_mv Ralph Santos Oliveira
dc.contributor.referee3.fl_str_mv Bruno Melo Mendes
dc.contributor.referee4.fl_str_mv Lucas Freitas de Freitas
dc.contributor.referee5.fl_str_mv Luc Beaulieu
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8256803192379960
dc.contributor.author.fl_str_mv Baljeet Seniwal
contributor_str_mv Telma Cristina Ferreira Fonseca
Jan Schuemann
Tarcísio Passos Ribeiro de Campos
Ralph Santos Oliveira
Bruno Melo Mendes
Lucas Freitas de Freitas
Luc Beaulieu
dc.subject.por.fl_str_mv LDR brachytherapy
Radioactive nanoparticles
Dose point kernels
Monte Carlo methods
topic LDR brachytherapy
Radioactive nanoparticles
Dose point kernels
Monte Carlo methods
Engenharia nuclear
Braquiterapia
Método de Monte Carlo
dc.subject.other.pt_BR.fl_str_mv Engenharia nuclear
Braquiterapia
Método de Monte Carlo
description Radioactive nanoparticles (radio-NPs) functionalized with tumor specific biomolecules, injected intratumorally, have been reported as an alternative to low dose rate (LDR) seed based brachytherapy (BT). In radiation based cancer treatments accurate estimation of absorbed dose is crucial for proper disease control and to minimize the risk of radiation induced side effects. Currently, used Medical Internal Radiation Dose (MIRD) formalism for internal dosimetry purposes do not consider the impact of uptake and washout of radiopharmaceutical on the cell survival fraction (SF) and absorbed dose estimation. The single cell dosimetry (SCD), based on MIRD formalism, is generally used to evaluate the dosimetric characteristics of radionuclides for theranostic applications. However, there exists discrepancies in the graphical methods and radial energy distribution, used to estimate the dose distribution. Moreover, precise modeling of radiation transport in the medium by Monte Carlo (MC) codes plays a pivotal role in the estimation of absorbed dose. The dose point kernel (DPK) are used to: (i) test the accuracy of different Monte Carlo (MC) codes, by performing comparison in terms of DPK; and (ii) estimate 3D-absorbed dose in nuclear medicine. However, as per our knowledge the impact differences in DPK on absorbed dose was not investigated. This PhD project aims to perform dosimetry of LDR BT applications, using radio-NPs, and fill the above mentioned gaps in literature using MC methods. The dosimetric calculations were performed using two widely used MC codes: Geant4-DNA and EGSnrc. Initially, the comparison in terms of DPK for electrons in energy range of 1 keV to 3 MeV was made to test the accuracy of both codes. After validation, SCD approach was used to evaluate the dosimetric characteristics of 12 alpha/beta/auger emitting radionuclides for theranostic applications. The concept of radial dose function was also proposed for graphical representation of dose distribution. Further, the cell survival curves published in literature were replicated using the mathematical model proposed by Sefl et al. 2016. Our findings show that, both Geant4-DNA and EGSnrc can accurately simulate the transport of low energy electrons with respect to other MC codes. Moreover, the largest differences between DPKs were found for electron energies below 10 keV, which resulted in inhomogeneous dose distribution in micrometer and no impact on millimeter sized voxels. The alpha emitters were found to deposit highest absorbed dose in comparison to auger and beta emitters. Furthermore, we effectively replicated the cell survival curves published in literature on the use of radio-NPs for LDR BT applications. It was concluded that the accuracy of the MC codes and MC parameters must be validated and benchmarked before using them for dosimetry purposes. Also, the accurate knowledge of uptake rate, washout rate of NPs, radio-sensitivity and tumour repopulation rate is important for the calculation of cell survival curves.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-07-12T17:16:33Z
dc.date.available.fl_str_mv 2021-07-12T17:16:33Z
dc.date.issued.fl_str_mv 2021-05-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/36710
dc.identifier.orcid.pt_BR.fl_str_mv https://orcid.org/0000-0001-8250-5982
url http://hdl.handle.net/1843/36710
https://orcid.org/0000-0001-8250-5982
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências e Técnicas Nucleares
dc.publisher.initials.fl_str_mv UFMG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ENG - DEPARTAMENTO DE ENGENHARIA NUCLEAR
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/36710/2/license.txt
https://repositorio.ufmg.br/bitstream/1843/36710/1/Thesis_Baljeet.pdf
bitstream.checksum.fl_str_mv cda590c95a0b51b4d15f60c9642ca272
032e1a1f89c845e5bc62ef1133fd4b0f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1803589237039169536