High-efficiency phenotyping for vitamin a in banana using artificial neural networks and colorimetric data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFMG |
Texto Completo: | https://doi.org/10.1590/1678-4499.467 http://hdl.handle.net/1843/40658 https://orcid.org/0000-0001-5196-0851 |
Resumo: | CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico |
id |
UFMG_c74b8bae8df73868f68f7316329b52ad |
---|---|
oai_identifier_str |
oai:repositorio.ufmg.br:1843/40658 |
network_acronym_str |
UFMG |
network_name_str |
Repositório Institucional da UFMG |
repository_id_str |
|
spelling |
2022-03-31T12:35:42Z2022-03-31T12:35:42Z2016753268274https://doi.org/10.1590/1678-4499.46716784499http://hdl.handle.net/1843/40658https://orcid.org/0000-0001-5196-0851CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorBanana is one of the most consumed fruits in Brazil and an important source of minerals, vitamins and carbohydrates for human diet. The characterization of banana superior genotypes allows identifying those with nutritional quality for cultivation and to integrate genetic improvement programs. However, identification and quantification of the provitamin carotenoids are hampered by the instruments and reagents cost for chemical analyzes, and it may become unworkable if the number of samples to be analyzed is high. Thus, the objective was to verify the potential of indirect phenotyping of the vitamin A content in banana through artificial neural networks (ANNs) using colorimetric data. Fifteen banana cultivars with four replications were evaluated, totaling 60 samples. For each sample, colorimetric data were obtained and the vitamin A content was estimated in the ripe banana pulp. For the prediction of the vitamin A content by colorimetric data, multilayer perceptron ANNs were used. Ten network architectures were tested with a single hidden layer. The network selected by the best fit (least mean square error) had four neurons in the hidden layer, enabling high efficiency in prediction of vitamin A (r2 = 0.98). The colorimetric parameters a* and Hue angle were the most important in this study. High-scale indirect phenotyping of vitamin A by ANNs on banana pulp is possible and feasible.engUniversidade Federal de Minas GeraisUFMGBrasilICA - INSTITUTO DE CIÊNCIAS AGRÁRIASBragantiaBananaAnalise colorimétricaInteligência artificialPerceptronsFenótipoHigh-efficiency phenotyping for vitamin a in banana using artificial neural networks and colorimetric datainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://www.scielo.br/j/brag/a/Jhkxs3Rkxq9WCs5CcL3Mrfd/?format=pdf&lang=enCésar FernandesaquinoLuiz Carlos Chamhum SalomãoAlcinei Mistico Azevedoinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGLICENSELicense.txtLicense.txttext/plain; charset=utf-82042https://repositorio.ufmg.br/bitstream/1843/40658/1/License.txtfa505098d172de0bc8864fc1287ffe22MD51ORIGINALHigh-efficiency phenotyping for vitamin a in banana using artificial neural networks and colorimetric data.pdfHigh-efficiency phenotyping for vitamin a in banana using artificial neural networks and colorimetric data.pdfapplication/pdf282837https://repositorio.ufmg.br/bitstream/1843/40658/2/High-efficiency%20phenotyping%20for%20vitamin%20a%20in%20banana%20using%20artificial%20neural%20networks%20and%20colorimetric%20data.pdfac34d71ecf725595f24df1e126c0d7feMD521843/406582022-03-31 09:35:42.607oai:repositorio.ufmg.br:1843/40658TElDRU7vv71BIERFIERJU1RSSUJVSe+/ve+/vU8gTu+/vU8tRVhDTFVTSVZBIERPIFJFUE9TSVTvv71SSU8gSU5TVElUVUNJT05BTCBEQSBVRk1HCiAKCkNvbSBhIGFwcmVzZW50Ye+/ve+/vW8gZGVzdGEgbGljZW7vv71hLCB2b2Pvv70gKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlIGFvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbu+/vW8gZXhjbHVzaXZvIGUgaXJyZXZvZ++/vXZlbCBkZSByZXByb2R1emlyIGUvb3UgZGlzdHJpYnVpciBhIHN1YSBwdWJsaWNh77+977+9byAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0cu+/vW5pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mg77+9dWRpbyBvdSB277+9ZGVvLgoKVm9j77+9IGRlY2xhcmEgcXVlIGNvbmhlY2UgYSBwb2zvv710aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2Pvv70gY29uY29yZGEgcXVlIG8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250Ze+/vWRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNh77+977+9byBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHvv73vv71vLgoKVm9j77+9IHRhbWLvv71tIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPvv71waWEgZGUgc3VhIHB1YmxpY2Hvv73vv71vIHBhcmEgZmlucyBkZSBzZWd1cmFu77+9YSwgYmFjay11cCBlIHByZXNlcnZh77+977+9by4KClZvY++/vSBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNh77+977+9byDvv70gb3JpZ2luYWwgZSBxdWUgdm9j77+9IHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vu77+9YS4gVm9j77+9IHRhbWLvv71tIGRlY2xhcmEgcXVlIG8gZGVw77+9c2l0byBkZSBzdWEgcHVibGljYe+/ve+/vW8gbu+/vW8sIHF1ZSBzZWphIGRlIHNldSBjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd177+9bS4KCkNhc28gYSBzdWEgcHVibGljYe+/ve+/vW8gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY++/vSBu77+9byBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2Pvv70gZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc++/vW8gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7vv71hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250Ze+/vWRvIGRhIHB1YmxpY2Hvv73vv71vIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0Hvv73vv71PIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ++/vU5JTyBPVSBBUE9JTyBERSBVTUEgQUfvv71OQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0Pvv70gREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklT77+9TyBDT01PIFRBTULvv71NIEFTIERFTUFJUyBPQlJJR0Hvv73vv71FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNh77+977+9bywgZSBu77+9byBmYXLvv70gcXVhbHF1ZXIgYWx0ZXJh77+977+9bywgYWzvv71tIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7vv71hLgo=Repositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2022-03-31T12:35:42Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
dc.title.pt_BR.fl_str_mv |
High-efficiency phenotyping for vitamin a in banana using artificial neural networks and colorimetric data |
title |
High-efficiency phenotyping for vitamin a in banana using artificial neural networks and colorimetric data |
spellingShingle |
High-efficiency phenotyping for vitamin a in banana using artificial neural networks and colorimetric data César Fernandesaquino Banana Analise colorimétrica Inteligência artificial Perceptrons Fenótipo |
title_short |
High-efficiency phenotyping for vitamin a in banana using artificial neural networks and colorimetric data |
title_full |
High-efficiency phenotyping for vitamin a in banana using artificial neural networks and colorimetric data |
title_fullStr |
High-efficiency phenotyping for vitamin a in banana using artificial neural networks and colorimetric data |
title_full_unstemmed |
High-efficiency phenotyping for vitamin a in banana using artificial neural networks and colorimetric data |
title_sort |
High-efficiency phenotyping for vitamin a in banana using artificial neural networks and colorimetric data |
author |
César Fernandesaquino |
author_facet |
César Fernandesaquino Luiz Carlos Chamhum Salomão Alcinei Mistico Azevedo |
author_role |
author |
author2 |
Luiz Carlos Chamhum Salomão Alcinei Mistico Azevedo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
César Fernandesaquino Luiz Carlos Chamhum Salomão Alcinei Mistico Azevedo |
dc.subject.other.pt_BR.fl_str_mv |
Banana Analise colorimétrica Inteligência artificial Perceptrons Fenótipo |
topic |
Banana Analise colorimétrica Inteligência artificial Perceptrons Fenótipo |
description |
CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016 |
dc.date.accessioned.fl_str_mv |
2022-03-31T12:35:42Z |
dc.date.available.fl_str_mv |
2022-03-31T12:35:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1843/40658 |
dc.identifier.doi.pt_BR.fl_str_mv |
https://doi.org/10.1590/1678-4499.467 |
dc.identifier.issn.pt_BR.fl_str_mv |
16784499 |
dc.identifier.orcid.pt_BR.fl_str_mv |
https://orcid.org/0000-0001-5196-0851 |
url |
https://doi.org/10.1590/1678-4499.467 http://hdl.handle.net/1843/40658 https://orcid.org/0000-0001-5196-0851 |
identifier_str_mv |
16784499 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Bragantia |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
dc.publisher.initials.fl_str_mv |
UFMG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
ICA - INSTITUTO DE CIÊNCIAS AGRÁRIAS |
publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
instname_str |
Universidade Federal de Minas Gerais (UFMG) |
instacron_str |
UFMG |
institution |
UFMG |
reponame_str |
Repositório Institucional da UFMG |
collection |
Repositório Institucional da UFMG |
bitstream.url.fl_str_mv |
https://repositorio.ufmg.br/bitstream/1843/40658/1/License.txt https://repositorio.ufmg.br/bitstream/1843/40658/2/High-efficiency%20phenotyping%20for%20vitamin%20a%20in%20banana%20using%20artificial%20neural%20networks%20and%20colorimetric%20data.pdf |
bitstream.checksum.fl_str_mv |
fa505098d172de0bc8864fc1287ffe22 ac34d71ecf725595f24df1e126c0d7fe |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
repository.mail.fl_str_mv |
|
_version_ |
1803589363743850496 |