Detalhes bibliográficos
Título da fonte: Repositório Institucional da UFMG
id UFMG_d236c77a189fb5b7fa5978eadf93cf9a
oai_identifier_str oai:repositorio.ufmg.br:1843/38395
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
reponame_str Repositório Institucional da UFMG
instacron_str UFMG
institution Universidade Federal de Minas Gerais (UFMG)
instname_str Universidade Federal de Minas Gerais (UFMG)
spelling Ronaldo Brasileiro Assunçãohttp://lattes.cnpq.br/8840780243131483Olímpio Hiroshi MiyagakiAugusto César dos Reis CostaHamilton Prado BuenoPaulo César CarriãoUberlândio Batista Severohttp://lattes.cnpq.br/8867513004934880Jeferson Camilo Silva2021-10-18T00:37:45Z2021-10-18T00:37:45Z2021-07-09http://hdl.handle.net/1843/38395Nesta tese de Doutorado estudamos problemas elípticos envolvendo o operador p-Laplaciano fracionário com múltiplas singularidades críticas do tipo Hardy-Sobolev. Neste sentido, demonstramos resultados de existência, não existência e simetria para a solução.In this doctoral thesis we consider a problem involving the fractional p-Laplacian operator (−∆p) su −µ |u| p−2u |x| p s = |u| p ∗ s (β)−2u |x| β + |u| p ∗ s (α)−2u |x| α (x ∈ R N ) (0.7) where 0 < s < 1, 1 < p < +∞, N > sp, 0 < α < sp, 0 < β < sp, β 6= α, µ is a real parameter, and p ∗ s (α) = (p(N −α)/(N − p s) is the critical Hardy-Sobolev exponent; in particular, if α = 0 then p ∗ s (0) = p ∗ s = N p/(N − sp) is the critical Sobolev exponent. The fractional p-Laplacian operator is a nonlinear and nonlocal operator defined for differentiable functions by (−∆p) su(x) := 2 lim ²→0 + Z RN \B²(x) |u(x)−u(y)| p−2 (u(x)−u(y)) |x − y| N+sp d y (x ∈ R N ). (0.8) We prove that for the parameters in the above specified intervals and with 0 6 µ < µH := inf u∈D s,p (R N ) u6=0 [u] p s,p Z RN u p |x| p s d x , there exists a weak solution u ∈ D s,p (R N ) to problem (0.7). The function space where we look for solution is the fractional homogeneous Sobolev space D s,p (R N ) := n u ∈ L p ∗ s (R N ): [u]s,p < ∞o , where [u]s,p denotes the Gagliardo seminorm, u ∈C ∞ 0 (R N ) 7−→ [u]s,p := µÏ R2N |u(x)−u(y)| p |x − y| N+sp d x d y¶ 1 p . A fundamental step to prove the existence result to problem (0.7) is the proof of the independent result relative to the best Hardy constant, given by 1 K(µ,α) := inf u∈D s,p (R N ) u6=0 [u] p s,p −µ Z RN |u| p |x| p s d x ÃZ RN |u| p ∗ s (α) |x| α d x! p p ∗ s (α) , (0.9) which is achieved by a nontrivial function u ∈ D s,p (R N ), under the condition µ ∈ (0,µH ). In the case p = 2 the fractional 2-Laplacian operator defined in (0.8) is denoted by (−∆) su(x) := (−∆2) su(x). In this case, we consider the function space H s (R N ), defined as the closure of the space C ∞ 0 (R N ) with respect to the norm kukHs (RN ) := µZ RN |(−∆) s/2u| 2 d x¶ 1 2 = µÏ R2N |u(x)−u(y)| 2 |x − y| N+2s d x d y¶ 1 2 . We also show that if u ∈ H s (R N ) is a weak solution to problem (−∆) su −µ u |x| 2s = |u| q−2u + |u| 2 ∗ s (α)−2u |x| α (x ∈ R N ), (0.10) where 0 < s < 1, 0 < α < 2s < N, 2∗ s (α) = 2(N − α)/(N − 2s), µ is a real parameter and q 6= 2 ∗ s , then u ≡ 0. Therefore, problem (0.10) does not have nontrivial solution when q 6= 2 ∗ s . The proof of this non-existence result is an immediate consequence of a Pohozaev-type identity for problem (0.10) that we state in the following way: Suppose that u ∈ H s (R N ) is a weak solution to problem (0.10). Then the harmonic extension of u on the half-space R N+1 + , denoted by w = E(u), verifies the identity (N −2s) 2 Ï R N+1 + y 1−2s |∇w| 2 d x d y = 1 ks Z RN à NF(x,u)+ X N i=1 xi Z u 0 fxi (x,t)d t! d x, (0.11) where ks = Γ(s) 2 1−2sΓ(1− s) , u = w(·, 0), f (x,u) = µ u |x| 2s + |u| q−2u + |u| 2 ∗ s (α)−2u |x| α and F(x,s) = Z s 0 f (x,t)d t. Finally, still in the case p = 2 of the fractional Laplacian operator, let 0 6 µ < µ¯ := 2 2s Γ 2 ¡ N+2s 4 ¢ Γ 2 ¡ N−2s 4 ¢, where µ¯ is the best constant of the continuous embedding H s (R N ) ,→ L 2 (R N ,|x| −2s ). We prove that every positive solution u ∈ H s (R N ) to problem (−∆) su −µ u |x| 2s = |u| 2 ∗ s −2u + |u| 2 ∗ s (β)−2u |x| β (x ∈ R N ) (0.12) is radially symmetric and decreasing with respect to some point x0 ∈ R N , that is, for every positive solution to problem (0.12) there exists an strictly decreasing function v : (0,+∞) → (0,+∞) such that u(x) = v(r ), r = |x − x0|.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em MatemáticaUFMGBrasilICX - DEPARTAMENTO DE MATEMÁTICAhttp://creativecommons.org/licenses/by-nc-nd/3.0/pt/info:eu-repo/semantics/openAccessMatemática – TesesOperador laplaciano – TesesPotenciais de Hardy – TesesExpoente crítico de Sobolev – Tesesp-Laplaciano fracionárioPotenciais de HardyExpoente crítico de Hardy-SobolevIdentidade de PohozaevResultados de existência, de não existência e de simetria de solução para o operador p-Laplaciano fracionário com múltiplas singularidades críticas e potencial de Hardyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALtese_jeferson.pdftese_jeferson.pdfapplication/pdf1507023https://repositorio.ufmg.br/bitstream/1843/38395/1/tese_jeferson.pdfb3b8c32f6172e91f47b9a83e6e02a1b9MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufmg.br/bitstream/1843/38395/2/license_rdfcfd6801dba008cb6adbd9838b81582abMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82118https://repositorio.ufmg.br/bitstream/1843/38395/3/license.txtcda590c95a0b51b4d15f60c9642ca272MD531843/383952021-10-17 21:37:45.736oai:repositorio.ufmg.br:1843/38395TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oaiopendoar:2021-10-18T00:37:45Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
_version_ 1813547604205633536