Detalhes bibliográficos
Título da fonte: Repositório Institucional da UFMG
id UFMG_d54160b25fddefe2aeac45841a04f4fc
oai_identifier_str oai:repositorio.ufmg.br:1843/63993
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
reponame_str Repositório Institucional da UFMG
instacron_str UFMG
institution Universidade Federal de Minas Gerais (UFMG)
instname_str Universidade Federal de Minas Gerais (UFMG)
spelling Raphael Campos Drumondhttp://lattes.cnpq.br/6034594218861618Emmanuel Araújo PereiraGabriel Teixeira LandiAdalberto Deybe Varizihttp://lattes.cnpq.br/4028142536745483Rodrigo Ferreira Saliba2024-02-15T19:19:20Z2024-02-15T19:19:20Z2023-08-16http://hdl.handle.net/1843/63993The dynamics of closed (ideal) quantum systems, i.e., systems which are not considered to be interacting with an external media (environment), are governed by unitary evolution which can be generally described by the Schrödinger -or, in the language of density operators, the von-Neunmann - equation. Nevertheless, real systems, i.e., systems which can be measured in the laboratory, are never completely closed and are inevitably going to interact with the various degrees of freedom of their environments. In this scenario, Schrödinger’s equation is only a valid description of the system’s evolution for small periods of time and a new description of its dynamics becomes necessary. One of the ways to do this is through the use of master equations, which are equations of motion that consider the dissipative effects in the system due to interactions with its environment. The Lindblad master equation is one of the most extensively studied. It describes Markovian evolutions, which are usually the case in the regime of weak interactions between system and environment. It has been successfully applied in many contexts, such as those of continuous measurement and quantum optics. In the context of open quantum many body problems it is not always possible to describe the system dynamics through a master equation in Lindblad form. Nonetheless, this approxmation can be used in a special class of atomic, molecular and optical (AMO) systems. The goal of these thesis is to study the dynamics of open many body quantum AMO systems which are approximately described by the Hubbard model through the use of numerical methods. To that end we will focus our attention on a particular simulational technique known as quantum trajectories which in many contexts proves to be very efficient - even more so if we integrate this method with others such as Tensor Networks, t-DMRG and exact diagonalization.A dinâmica de sistemas quânticos fechados (ideais), i.e., sistemas em que não consideramos interações com um meio externo (ambiente), é governada por uma evolução unitária, que pode ser geralmente descrita pela equação de Schrödinger - ou, na linguagem de operadores densidade, a equação de von-Neumann. No entanto, sistemas reais, ou seja, sistemas que podem ser medidos no laboratório, nunca estão completamente fechados e inevitavelmente irão interagir com os diversos graus de liberdade de seus ambientes. Nesse cenário, a equação de Schrödinger é apenas uma descrição válida da evolução do sistema por pequenos períodos de tempo, e uma nova descrição se torna necessária. Uma das formas de fazer isso é através do uso de equações mestras, que são equações de movimento que consideram os efeitos dissipativos no sistema devido às interações com o ambiente. Entre as possiveis formas das equações mestras, a equação de Lindblad é uma das mais extensivamente estudadas. Ela descreve evoluções markovianas, que geralmente são válidas no regime de interações fracas entre sistema e ambiente. Nessa perspectiva, ela tem sido aplicada com sucesso em muitos contextos, como medição contínua e ótica quântica. No contexto de problemas de sistemas quânticos abertos de muitos corpos, nem sempre é possível descrever a dinâmica dos sistemas através de uma equação mestra na forma de Lindblad. No entanto, essa aproximação pode ser usada em uma classe especial de sistemas atômicos, moleculares e ópticos (AMO). O objetivo desta dissertação é estudar a dinâmica de sistemas quânticos abertos de muitos corpos AMO, que são aproximadamente descritos pelo modelo de Hubbard, através do uso de métodos numéricos. Para isso, vamos focar nossa atenção em uma técnica de simulação particular conhecida como trajetórias quânticas, que em muitos contextos se mostra muito eficiente - o que pode ser melhorado se integrarmos esse método com outros, como Tensor Networks, t-DMRG e diagonalização exata.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorengUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em FísicaUFMGBrasilICX - DEPARTAMENTO DE FÍSICAHubbard, Modelo deFísica do estado sólidoOpen quantum systemsMany body quantum systemsHubbard modelQuantum trajectoriesOpen many body quantum systemsContinuous quantum Zeno effectState preparationNumerical solutions to open Hubbard modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALNumerical_solutions_to_open_Hubbard_models.pdfNumerical_solutions_to_open_Hubbard_models.pdfapplication/pdf3233597https://repositorio.ufmg.br/bitstream/1843/63993/2/Numerical_solutions_to_open_Hubbard_models.pdfed14bb8e183371a36076ccc4fcfe89e7MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82118https://repositorio.ufmg.br/bitstream/1843/63993/3/license.txtcda590c95a0b51b4d15f60c9642ca272MD531843/639932024-02-15 16:19:21.095oai:repositorio.ufmg.br:1843/63993TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oaiopendoar:2024-02-15T19:19:21Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
_version_ 1813548058203389952