Nonlinear perturbations of a periodic magnetic nonlinear Choquard equation with Hardy-Littlewood-Sobolev critical exponent

Detalhes bibliográficos
Autor(a) principal: Leandro da Luz Vieira
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/35582
Resumo: In this work we consider the following magnetic nonlinear Choquard equations \[-(\nabla+iA(x))^2u+ V(x)u = \left(\frac{1}{|x|^{\alpha}}*|u|^{2_{\alpha}^*}\right) |u|^{2_{\alpha}^*-2} u + \lambda f(u)\ \textrm{ in }\ \R^N (N\geq 3)\] and \[(-\Delta)^s_A u+ V(x)u = \left(\frac{1}{|x|^{\alpha}}*|u|^{2_{\alpha,s}^*}\right) |u|^{2_{\alpha,s}^*-2} u + \lambda g(u)\ \textrm{ in }\ \R^N (N=3),\] where $s\in(0,1)$, $2_{\alpha}^{*}=\frac{2N-\alpha}{N-2}$ and $2_{\alpha,s}^{*}=\frac{6-\alpha}{3-2s}$ are critical exponents in the sense of the Hardy-Littlewood-Sobolev inequality. Moreover, in both problems $0<\alpha< N,$ $\lambda>0,$ $A: \mathbb{R}^{N}\rightarrow \mathbb{R}^{N}$ is an $C^1$, $\mathbb{Z}^N$-periodic vector potential and $V$ is a continuous scalar potential given as a perturbation of a periodic potential. Considering different types of nonlinearities $f$ and $g$, namely, $f(x,u)=\left(\frac{1}{|x|^{\alpha}}*|u|^{p}\right)|u|^{p-2} u$ for $(2N-\alpha)/N<p<2^{*}_{\alpha}$, then $f(u)=|u|^{p-1} u$ for $1<p<2^*-1$ and $f(u)=|u|^{2^* - 2}u$ (where $2^*=2N/(N-2)$), $g(x,u)=\left(\frac{1}{|x|^{\alpha}}*|u|^{p}\right)|u|^{p-2} u$ for $(6-\alpha)/3<p<2^{*}_{\alpha,s}$, then $g(u)=|u|^{p-1} u$ for $1<p<2_s^*-1$ and $g(u)=|u|^{2_s^* - 2}u$ (where $2_s^*=6/(3-2s)$), we prove the existence of at least one ground state solution for these equations by variational methods if $p$ belongs to some intervals depending on $N$, $\lambda$ and also on $s$ in the second problem.
id UFMG_dff694342cc7a65ba094b351fa1fca87
oai_identifier_str oai:repositorio.ufmg.br:1843/35582
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Hamilton Prado Buenohttp://lattes.cnpq.br/0867903003222790Narciso da Hora LisboaGilberto PereiraGiovani FigueiredoGrey ErcoleOlimpio Hiroshi MiyagakiRonaldo Brasileiro Assunçãohttp://lattes.cnpq.br/6875339639133710Leandro da Luz Vieira2021-04-08T01:08:11Z2021-04-08T01:08:11Z2020-08-04http://hdl.handle.net/1843/35582In this work we consider the following magnetic nonlinear Choquard equations \[-(\nabla+iA(x))^2u+ V(x)u = \left(\frac{1}{|x|^{\alpha}}*|u|^{2_{\alpha}^*}\right) |u|^{2_{\alpha}^*-2} u + \lambda f(u)\ \textrm{ in }\ \R^N (N\geq 3)\] and \[(-\Delta)^s_A u+ V(x)u = \left(\frac{1}{|x|^{\alpha}}*|u|^{2_{\alpha,s}^*}\right) |u|^{2_{\alpha,s}^*-2} u + \lambda g(u)\ \textrm{ in }\ \R^N (N=3),\] where $s\in(0,1)$, $2_{\alpha}^{*}=\frac{2N-\alpha}{N-2}$ and $2_{\alpha,s}^{*}=\frac{6-\alpha}{3-2s}$ are critical exponents in the sense of the Hardy-Littlewood-Sobolev inequality. Moreover, in both problems $0<\alpha< N,$ $\lambda>0,$ $A: \mathbb{R}^{N}\rightarrow \mathbb{R}^{N}$ is an $C^1$, $\mathbb{Z}^N$-periodic vector potential and $V$ is a continuous scalar potential given as a perturbation of a periodic potential. Considering different types of nonlinearities $f$ and $g$, namely, $f(x,u)=\left(\frac{1}{|x|^{\alpha}}*|u|^{p}\right)|u|^{p-2} u$ for $(2N-\alpha)/N<p<2^{*}_{\alpha}$, then $f(u)=|u|^{p-1} u$ for $1<p<2^*-1$ and $f(u)=|u|^{2^* - 2}u$ (where $2^*=2N/(N-2)$), $g(x,u)=\left(\frac{1}{|x|^{\alpha}}*|u|^{p}\right)|u|^{p-2} u$ for $(6-\alpha)/3<p<2^{*}_{\alpha,s}$, then $g(u)=|u|^{p-1} u$ for $1<p<2_s^*-1$ and $g(u)=|u|^{2_s^* - 2}u$ (where $2_s^*=6/(3-2s)$), we prove the existence of at least one ground state solution for these equations by variational methods if $p$ belongs to some intervals depending on $N$, $\lambda$ and also on $s$ in the second problem.Neste trabalho nós consideramos as seguintes equações de Choquard magnéticas não lineares \[-(\nabla+iA(x))^2u+ V(x)u = \left(\frac{1}{|x|^{\alpha}}*|u|^{2_{\alpha}^*}\right) |u|^{2_{\alpha}^*-2} u + \lambda f(u)\ \textrm{ em }\ \R^N (N\geq 3)\] e \[(-\Delta)^s_A u+ V(x)u = \left(\frac{1}{|x|^{\alpha}}*|u|^{2_{\alpha,s}^*}\right) |u|^{2_{\alpha,s}^*-2} u + \lambda g(u)\ \textrm{ em }\ \R^N (N=3),\] em que $s\in(0,1)$, $2_{\alpha}^{*}=\frac{2N-\alpha}{N-2}$ e $2_{\alpha,s}^{*}=\frac{6-\alpha}{3-2s}$ são os expoentes críticos no sentido da desigualdade de Hardy-Littlewood-Sobolev. Além disso, em ambos os problemas $0<\alpha< N,$ $\lambda>0,$ $A: \mathbb{R}^{N}\rightarrow \mathbb{R}^{N}$ é um potencial vetorial de classe $C^1$, $\mathbb{Z}^N$-periódico e $V$ é potencial escalar contínuo dado como uma perturbação de um potencial periódico. Considerando diferentes tipos de não linearidades $f$ e $g$, a saber, $f(x,u)=\left(\frac{1}{|x|^{\alpha}}*|u|^{p}\right)|u|^{p-2} u$ para $(2N-\alpha)/N<p<2^{*}_{\alpha}$, depois $f(u)=|u|^{p-1} u$ para $1<p<2^*-1$ e $f(u)=|u|^{2^* - 2}u$ (em que $2^*=2N/(N-2)$), $g(x,u)=\left(\frac{1}{|x|^{\alpha}}*|u|^{p}\right)|u|^{p-2} u$ para $(6-\alpha)/3<p<2^{*}_{\alpha,s}$, depois $g(u)=|u|^{p-1} u$ para $1<p<2_s^*-1$ e $g(u)=|u|^{2_s^* - 2}u$ (em que $2_s^*=6/(3-2s)$), nós provamos a existência de ao menos uma solução de estado fundamental para estas equações por métodos variacionais se $p$ pertence a alguns intervalos dependendo de $N$, $\lambda$ e também de $s$ no segundo problema.FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorengUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em MatemáticaUFMGBrasilICX - DEPARTAMENTO DE MATEMÁTICAhttp://creativecommons.org/licenses/by-nc-nd/3.0/pt/info:eu-repo/semantics/openAccessMatemática – TesesMétodos variacionais – TesesEquação de Choquard – TesesExpoente crítico de Hardy­ Littlewood­Sobolev– Teses.Variational methodsMagnetic Choquard equationFractional magnetic Choquard equationHardy-Littlewood-Sobolev critical exponentNonlinear perturbations of a periodic magnetic nonlinear Choquard equation with Hardy-Littlewood-Sobolev critical exponentinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufmg.br/bitstream/1843/35582/2/license_rdfcfd6801dba008cb6adbd9838b81582abMD52ORIGINALThesis_LeandrodaLuz_Final.pdfThesis_LeandrodaLuz_Final.pdfapplication/pdf2288506https://repositorio.ufmg.br/bitstream/1843/35582/4/Thesis_LeandrodaLuz_Final.pdf83a87710542911f0063ce673b53715b7MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82119https://repositorio.ufmg.br/bitstream/1843/35582/5/license.txt34badce4be7e31e3adb4575ae96af679MD551843/355822021-04-07 22:08:11.107oai:repositorio.ufmg.br:1843/35582TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KCg==Repositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2021-04-08T01:08:11Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv Nonlinear perturbations of a periodic magnetic nonlinear Choquard equation with Hardy-Littlewood-Sobolev critical exponent
title Nonlinear perturbations of a periodic magnetic nonlinear Choquard equation with Hardy-Littlewood-Sobolev critical exponent
spellingShingle Nonlinear perturbations of a periodic magnetic nonlinear Choquard equation with Hardy-Littlewood-Sobolev critical exponent
Leandro da Luz Vieira
Variational methods
Magnetic Choquard equation
Fractional magnetic Choquard equation
Hardy-Littlewood-Sobolev critical exponent
Matemática – Teses
Métodos variacionais – Teses
Equação de Choquard – Teses
Expoente crítico de Hardy­ Littlewood­Sobolev– Teses.
title_short Nonlinear perturbations of a periodic magnetic nonlinear Choquard equation with Hardy-Littlewood-Sobolev critical exponent
title_full Nonlinear perturbations of a periodic magnetic nonlinear Choquard equation with Hardy-Littlewood-Sobolev critical exponent
title_fullStr Nonlinear perturbations of a periodic magnetic nonlinear Choquard equation with Hardy-Littlewood-Sobolev critical exponent
title_full_unstemmed Nonlinear perturbations of a periodic magnetic nonlinear Choquard equation with Hardy-Littlewood-Sobolev critical exponent
title_sort Nonlinear perturbations of a periodic magnetic nonlinear Choquard equation with Hardy-Littlewood-Sobolev critical exponent
author Leandro da Luz Vieira
author_facet Leandro da Luz Vieira
author_role author
dc.contributor.advisor1.fl_str_mv Hamilton Prado Bueno
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0867903003222790
dc.contributor.advisor-co1.fl_str_mv Narciso da Hora Lisboa
dc.contributor.referee1.fl_str_mv Gilberto Pereira
dc.contributor.referee2.fl_str_mv Giovani Figueiredo
dc.contributor.referee3.fl_str_mv Grey Ercole
dc.contributor.referee4.fl_str_mv Olimpio Hiroshi Miyagaki
dc.contributor.referee5.fl_str_mv Ronaldo Brasileiro Assunção
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6875339639133710
dc.contributor.author.fl_str_mv Leandro da Luz Vieira
contributor_str_mv Hamilton Prado Bueno
Narciso da Hora Lisboa
Gilberto Pereira
Giovani Figueiredo
Grey Ercole
Olimpio Hiroshi Miyagaki
Ronaldo Brasileiro Assunção
dc.subject.por.fl_str_mv Variational methods
Magnetic Choquard equation
Fractional magnetic Choquard equation
Hardy-Littlewood-Sobolev critical exponent
topic Variational methods
Magnetic Choquard equation
Fractional magnetic Choquard equation
Hardy-Littlewood-Sobolev critical exponent
Matemática – Teses
Métodos variacionais – Teses
Equação de Choquard – Teses
Expoente crítico de Hardy­ Littlewood­Sobolev– Teses.
dc.subject.other.pt_BR.fl_str_mv Matemática – Teses
Métodos variacionais – Teses
Equação de Choquard – Teses
Expoente crítico de Hardy­ Littlewood­Sobolev– Teses.
description In this work we consider the following magnetic nonlinear Choquard equations \[-(\nabla+iA(x))^2u+ V(x)u = \left(\frac{1}{|x|^{\alpha}}*|u|^{2_{\alpha}^*}\right) |u|^{2_{\alpha}^*-2} u + \lambda f(u)\ \textrm{ in }\ \R^N (N\geq 3)\] and \[(-\Delta)^s_A u+ V(x)u = \left(\frac{1}{|x|^{\alpha}}*|u|^{2_{\alpha,s}^*}\right) |u|^{2_{\alpha,s}^*-2} u + \lambda g(u)\ \textrm{ in }\ \R^N (N=3),\] where $s\in(0,1)$, $2_{\alpha}^{*}=\frac{2N-\alpha}{N-2}$ and $2_{\alpha,s}^{*}=\frac{6-\alpha}{3-2s}$ are critical exponents in the sense of the Hardy-Littlewood-Sobolev inequality. Moreover, in both problems $0<\alpha< N,$ $\lambda>0,$ $A: \mathbb{R}^{N}\rightarrow \mathbb{R}^{N}$ is an $C^1$, $\mathbb{Z}^N$-periodic vector potential and $V$ is a continuous scalar potential given as a perturbation of a periodic potential. Considering different types of nonlinearities $f$ and $g$, namely, $f(x,u)=\left(\frac{1}{|x|^{\alpha}}*|u|^{p}\right)|u|^{p-2} u$ for $(2N-\alpha)/N<p<2^{*}_{\alpha}$, then $f(u)=|u|^{p-1} u$ for $1<p<2^*-1$ and $f(u)=|u|^{2^* - 2}u$ (where $2^*=2N/(N-2)$), $g(x,u)=\left(\frac{1}{|x|^{\alpha}}*|u|^{p}\right)|u|^{p-2} u$ for $(6-\alpha)/3<p<2^{*}_{\alpha,s}$, then $g(u)=|u|^{p-1} u$ for $1<p<2_s^*-1$ and $g(u)=|u|^{2_s^* - 2}u$ (where $2_s^*=6/(3-2s)$), we prove the existence of at least one ground state solution for these equations by variational methods if $p$ belongs to some intervals depending on $N$, $\lambda$ and also on $s$ in the second problem.
publishDate 2020
dc.date.issued.fl_str_mv 2020-08-04
dc.date.accessioned.fl_str_mv 2021-04-08T01:08:11Z
dc.date.available.fl_str_mv 2021-04-08T01:08:11Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/35582
url http://hdl.handle.net/1843/35582
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/pt/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/pt/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Matemática
dc.publisher.initials.fl_str_mv UFMG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ICX - DEPARTAMENTO DE MATEMÁTICA
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/35582/2/license_rdf
https://repositorio.ufmg.br/bitstream/1843/35582/4/Thesis_LeandrodaLuz_Final.pdf
https://repositorio.ufmg.br/bitstream/1843/35582/5/license.txt
bitstream.checksum.fl_str_mv cfd6801dba008cb6adbd9838b81582ab
83a87710542911f0063ce673b53715b7
34badce4be7e31e3adb4575ae96af679
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1803589238030073856