spelling |
Thaís Paiva Gallettihttp://lattes.cnpq.br/6313658269652848Marcos Oliveira PratesVictor Hugo Lachos DávilaVinícius Diniz Mayrinkhttp://lattes.cnpq.br/2554654003098795Fernanda Buzza Alves Barros2023-10-30T15:46:41Z2023-10-30T15:46:41Z2023-08-15http://hdl.handle.net/1843/60244Muitos dados coletados por agências possuem características confidenciais e informações sensíveis, portanto as instituições de pesquisa devem obedecer protocolos legais e éticos para não divulgar tais informações de maneira indiscriminada. Este trabalho utiliza a metodologia de dados sintéticos e imputação múltipla que são técnicas desenvolvidas para a divulgação segura de dados sensíveis, uma vez que apresentam uma maior preservação da utilidade dos dados. Esse método substitui os valores originais por valores simulados utilizando distribuições de probabilidades ajustadas aos valores originais, podendo ser aplicado para substituir parcialmente ou completamente os dados originais. O modelo de [26] e atualizado por [25], utiliza essa metodologia para gerar coordenadas geográficas sintéticas, entretanto não existia no modelo a previsão de espaços não habitáveis, como por exemplo aeroporto e lagoas. Portanto, contribuímos com a inclusão de tais espaços e denominamos eles como áreas restritas (espaços em que não existem habitações de indivíduos). Para avaliar essa contribuição no modelo, utilizamos um banco de dados simulado e representamos graficamente os resultados da aplicação com e sem a inclusão das áreas restritas. Por fim, realizamos a aplicação em um banco de dados de casos de COVID-19 da cidade de Montes Claros - MG, e pudemos comprovar a importância da inclusão de espaços inabitáveis nos dados para geração das coordenadas sintéticas.Many data collected by agencies have confidential characteristics and sensitive information, so research institutions must obey legal and ethical protocols not to disclose such information indiscriminately. This work uses the methodology of synthetic data and multiple imputation, which are techniques developed for the safe disclosure of sensitive data, since they present a greater preservation of the usefulness of the data. This method replaces the original values with simulated values using probability distributions fitted to the original values, and can be applied to replace partially or completely the original data. The model by [26] and updated by [25], uses this methodology to generate synthetic geographic coordinates, however the model did not include the prediction of non-inhabitable spaces, such as airports and lakes. Therefore, we contribute to the inclusion of such spaces and call them restricted areas (spaces where individuals do not live). To evaluate this contribution in the model, we used a simulated database and graphically represented the results of the application with and without the inclusion of restricted areas. Finally, we carried out the application in a database of COVID-19 cases in the city of Montes Claros - MG, and we were able to prove the importance of including uninhabitable spaces in the data for the generation of synthetic coordinates.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em EstatísticaUFMGBrasilICX - DEPARTAMENTO DE ESTATÍSTICAEstatística – TesesAnálise espacial (Estatística) – TesesSaúde pública – Estatística – Dados não estruturados - TesesDados SintéticosConfidencialidadeCoordenadas Geográficas SintéticasEstatística EspacialCoordenadas sintéticas em bancos de dados confidenciais: uma aplicação em dados de covid-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGLICENSElicense.txtlicense.txttext/plain; charset=utf-82118https://repositorio.ufmg.br/bitstream/1843/60244/2/license.txtcda590c95a0b51b4d15f60c9642ca272MD52ORIGINALCoordenadas sintéticas em bancos de dados confidenciais uma aplicação em dados de covid-19.pdfCoordenadas sintéticas em bancos de dados confidenciais uma aplicação em dados de covid-19.pdfapplication/pdf15616214https://repositorio.ufmg.br/bitstream/1843/60244/1/Coordenadas%20sint%c3%a9ticas%20em%20bancos%20de%20dados%20confidenciais%20uma%20aplica%c3%a7%c3%a3o%20em%20dados%20de%20covid-19.pdf4fb46a36da243d56f27550b987457420MD511843/602442023-10-30 12:46:41.751oai:repositorio.ufmg.br:1843/60244TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oaiopendoar:2023-10-30T15:46:41Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
|