Convolutional neural networks in the qualitative improvement of sweet potato roots
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFMG |
Texto Completo: | https://doi.org/10.1038/s41598-023-34375-6 http://hdl.handle.net/1843/76535 |
Resumo: | The objective was to verify whether convolutional neural networks can help sweet potato phenotyping for qualitative traits. We evaluated 16 families of sweet potato half-sibs in a randomized block design with four replications. We obtained the images at the plant level and used the ExpImage package of the R software to reduce the resolution and individualize one root per image. We grouped them according to their classifications regarding shape, peel color, and damage caused by insects. 600 roots of each class were destined for training the networks, while the rest was used to verify the quality of the fit. We used the python language on the Google Colab platform and the Keras library, considering the VGG-16, Inception-v3, ResNet-50, InceptionResNetV2, and EfficientNetB3 architectures. The InceptionResNetV2 architecture stood out with high accuracy in classifying individuals according to shape, insect damage, and peel color. Image analysis associated with deep learning may help develop applications used by rural producers and improve sweet potatoes, reducing subjectivity, labor, time, and financial resources in phenotyping. |
id |
UFMG_e6806ec4ea2248e981f9cac4abda7e8c |
---|---|
oai_identifier_str |
oai:repositorio.ufmg.br:1843/76535 |
network_acronym_str |
UFMG |
network_name_str |
Repositório Institucional da UFMG |
repository_id_str |
|
spelling |
Convolutional neural networks in the qualitative improvement of sweet potato rootsBatata-doceRedes neurais (Computação)Genética vegetalMelhoramento genéticoBatata-doceRedes neurais (Computação)Genética vegetalMelhoramento genéticoThe objective was to verify whether convolutional neural networks can help sweet potato phenotyping for qualitative traits. We evaluated 16 families of sweet potato half-sibs in a randomized block design with four replications. We obtained the images at the plant level and used the ExpImage package of the R software to reduce the resolution and individualize one root per image. We grouped them according to their classifications regarding shape, peel color, and damage caused by insects. 600 roots of each class were destined for training the networks, while the rest was used to verify the quality of the fit. We used the python language on the Google Colab platform and the Keras library, considering the VGG-16, Inception-v3, ResNet-50, InceptionResNetV2, and EfficientNetB3 architectures. The InceptionResNetV2 architecture stood out with high accuracy in classifying individuals according to shape, insect damage, and peel color. Image analysis associated with deep learning may help develop applications used by rural producers and improve sweet potatoes, reducing subjectivity, labor, time, and financial resources in phenotyping.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal de Minas GeraisBrasilICA - INSTITUTO DE CIÊNCIAS AGRÁRIASUFMG2024-09-17T13:10:48Z2024-09-17T13:10:48Z2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.1038/s41598-023-34375-620452322http://hdl.handle.net/1843/76535engscientific reportsAnaclara Gonçalves FernandesNermy Ribeiro ValadaresClóvis Henrique Oliveira RodriguesRayane Aguiar AlvesLis Lorena Melucio GuedesAndré Luiz Mendes AthaydeAlcinei Mistico Azevedoinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2024-09-17T16:36:03Zoai:repositorio.ufmg.br:1843/76535Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2024-09-17T16:36:03Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
dc.title.none.fl_str_mv |
Convolutional neural networks in the qualitative improvement of sweet potato roots |
title |
Convolutional neural networks in the qualitative improvement of sweet potato roots |
spellingShingle |
Convolutional neural networks in the qualitative improvement of sweet potato roots Anaclara Gonçalves Fernandes Batata-doce Redes neurais (Computação) Genética vegetal Melhoramento genético Batata-doce Redes neurais (Computação) Genética vegetal Melhoramento genético |
title_short |
Convolutional neural networks in the qualitative improvement of sweet potato roots |
title_full |
Convolutional neural networks in the qualitative improvement of sweet potato roots |
title_fullStr |
Convolutional neural networks in the qualitative improvement of sweet potato roots |
title_full_unstemmed |
Convolutional neural networks in the qualitative improvement of sweet potato roots |
title_sort |
Convolutional neural networks in the qualitative improvement of sweet potato roots |
author |
Anaclara Gonçalves Fernandes |
author_facet |
Anaclara Gonçalves Fernandes Nermy Ribeiro Valadares Clóvis Henrique Oliveira Rodrigues Rayane Aguiar Alves Lis Lorena Melucio Guedes André Luiz Mendes Athayde Alcinei Mistico Azevedo |
author_role |
author |
author2 |
Nermy Ribeiro Valadares Clóvis Henrique Oliveira Rodrigues Rayane Aguiar Alves Lis Lorena Melucio Guedes André Luiz Mendes Athayde Alcinei Mistico Azevedo |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Anaclara Gonçalves Fernandes Nermy Ribeiro Valadares Clóvis Henrique Oliveira Rodrigues Rayane Aguiar Alves Lis Lorena Melucio Guedes André Luiz Mendes Athayde Alcinei Mistico Azevedo |
dc.subject.por.fl_str_mv |
Batata-doce Redes neurais (Computação) Genética vegetal Melhoramento genético Batata-doce Redes neurais (Computação) Genética vegetal Melhoramento genético |
topic |
Batata-doce Redes neurais (Computação) Genética vegetal Melhoramento genético Batata-doce Redes neurais (Computação) Genética vegetal Melhoramento genético |
description |
The objective was to verify whether convolutional neural networks can help sweet potato phenotyping for qualitative traits. We evaluated 16 families of sweet potato half-sibs in a randomized block design with four replications. We obtained the images at the plant level and used the ExpImage package of the R software to reduce the resolution and individualize one root per image. We grouped them according to their classifications regarding shape, peel color, and damage caused by insects. 600 roots of each class were destined for training the networks, while the rest was used to verify the quality of the fit. We used the python language on the Google Colab platform and the Keras library, considering the VGG-16, Inception-v3, ResNet-50, InceptionResNetV2, and EfficientNetB3 architectures. The InceptionResNetV2 architecture stood out with high accuracy in classifying individuals according to shape, insect damage, and peel color. Image analysis associated with deep learning may help develop applications used by rural producers and improve sweet potatoes, reducing subjectivity, labor, time, and financial resources in phenotyping. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 2024-09-17T13:10:48Z 2024-09-17T13:10:48Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1038/s41598-023-34375-6 20452322 http://hdl.handle.net/1843/76535 |
url |
https://doi.org/10.1038/s41598-023-34375-6 http://hdl.handle.net/1843/76535 |
identifier_str_mv |
20452322 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
scientific reports |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais Brasil ICA - INSTITUTO DE CIÊNCIAS AGRÁRIAS UFMG |
publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais Brasil ICA - INSTITUTO DE CIÊNCIAS AGRÁRIAS UFMG |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
instname_str |
Universidade Federal de Minas Gerais (UFMG) |
instacron_str |
UFMG |
institution |
UFMG |
reponame_str |
Repositório Institucional da UFMG |
collection |
Repositório Institucional da UFMG |
repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
repository.mail.fl_str_mv |
repositorio@ufmg.br |
_version_ |
1816829825449459712 |