Convolutional neural networks in the qualitative improvement of sweet potato roots

Detalhes bibliográficos
Autor(a) principal: Anaclara Gonçalves Fernandes
Data de Publicação: 2023
Outros Autores: Nermy Ribeiro Valadares, Clóvis Henrique Oliveira Rodrigues, Rayane Aguiar Alves, Lis Lorena Melucio Guedes, André Luiz Mendes Athayde, Alcinei Mistico Azevedo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFMG
Texto Completo: https://doi.org/10.1038/s41598-023-34375-6
http://hdl.handle.net/1843/76535
Resumo: The objective was to verify whether convolutional neural networks can help sweet potato phenotyping for qualitative traits. We evaluated 16 families of sweet potato half-sibs in a randomized block design with four replications. We obtained the images at the plant level and used the ExpImage package of the R software to reduce the resolution and individualize one root per image. We grouped them according to their classifications regarding shape, peel color, and damage caused by insects. 600 roots of each class were destined for training the networks, while the rest was used to verify the quality of the fit. We used the python language on the Google Colab platform and the Keras library, considering the VGG-16, Inception-v3, ResNet-50, InceptionResNetV2, and EfficientNetB3 architectures. The InceptionResNetV2 architecture stood out with high accuracy in classifying individuals according to shape, insect damage, and peel color. Image analysis associated with deep learning may help develop applications used by rural producers and improve sweet potatoes, reducing subjectivity, labor, time, and financial resources in phenotyping.
id UFMG_e6806ec4ea2248e981f9cac4abda7e8c
oai_identifier_str oai:repositorio.ufmg.br:1843/76535
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Convolutional neural networks in the qualitative improvement of sweet potato rootsBatata-doceRedes neurais (Computação)Genética vegetalMelhoramento genéticoBatata-doceRedes neurais (Computação)Genética vegetalMelhoramento genéticoThe objective was to verify whether convolutional neural networks can help sweet potato phenotyping for qualitative traits. We evaluated 16 families of sweet potato half-sibs in a randomized block design with four replications. We obtained the images at the plant level and used the ExpImage package of the R software to reduce the resolution and individualize one root per image. We grouped them according to their classifications regarding shape, peel color, and damage caused by insects. 600 roots of each class were destined for training the networks, while the rest was used to verify the quality of the fit. We used the python language on the Google Colab platform and the Keras library, considering the VGG-16, Inception-v3, ResNet-50, InceptionResNetV2, and EfficientNetB3 architectures. The InceptionResNetV2 architecture stood out with high accuracy in classifying individuals according to shape, insect damage, and peel color. Image analysis associated with deep learning may help develop applications used by rural producers and improve sweet potatoes, reducing subjectivity, labor, time, and financial resources in phenotyping.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal de Minas GeraisBrasilICA - INSTITUTO DE CIÊNCIAS AGRÁRIASUFMG2024-09-17T13:10:48Z2024-09-17T13:10:48Z2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.1038/s41598-023-34375-620452322http://hdl.handle.net/1843/76535engscientific reportsAnaclara Gonçalves FernandesNermy Ribeiro ValadaresClóvis Henrique Oliveira RodriguesRayane Aguiar AlvesLis Lorena Melucio GuedesAndré Luiz Mendes AthaydeAlcinei Mistico Azevedoinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2024-09-17T16:36:03Zoai:repositorio.ufmg.br:1843/76535Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2024-09-17T16:36:03Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Convolutional neural networks in the qualitative improvement of sweet potato roots
title Convolutional neural networks in the qualitative improvement of sweet potato roots
spellingShingle Convolutional neural networks in the qualitative improvement of sweet potato roots
Anaclara Gonçalves Fernandes
Batata-doce
Redes neurais (Computação)
Genética vegetal
Melhoramento genético
Batata-doce
Redes neurais (Computação)
Genética vegetal
Melhoramento genético
title_short Convolutional neural networks in the qualitative improvement of sweet potato roots
title_full Convolutional neural networks in the qualitative improvement of sweet potato roots
title_fullStr Convolutional neural networks in the qualitative improvement of sweet potato roots
title_full_unstemmed Convolutional neural networks in the qualitative improvement of sweet potato roots
title_sort Convolutional neural networks in the qualitative improvement of sweet potato roots
author Anaclara Gonçalves Fernandes
author_facet Anaclara Gonçalves Fernandes
Nermy Ribeiro Valadares
Clóvis Henrique Oliveira Rodrigues
Rayane Aguiar Alves
Lis Lorena Melucio Guedes
André Luiz Mendes Athayde
Alcinei Mistico Azevedo
author_role author
author2 Nermy Ribeiro Valadares
Clóvis Henrique Oliveira Rodrigues
Rayane Aguiar Alves
Lis Lorena Melucio Guedes
André Luiz Mendes Athayde
Alcinei Mistico Azevedo
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Anaclara Gonçalves Fernandes
Nermy Ribeiro Valadares
Clóvis Henrique Oliveira Rodrigues
Rayane Aguiar Alves
Lis Lorena Melucio Guedes
André Luiz Mendes Athayde
Alcinei Mistico Azevedo
dc.subject.por.fl_str_mv Batata-doce
Redes neurais (Computação)
Genética vegetal
Melhoramento genético
Batata-doce
Redes neurais (Computação)
Genética vegetal
Melhoramento genético
topic Batata-doce
Redes neurais (Computação)
Genética vegetal
Melhoramento genético
Batata-doce
Redes neurais (Computação)
Genética vegetal
Melhoramento genético
description The objective was to verify whether convolutional neural networks can help sweet potato phenotyping for qualitative traits. We evaluated 16 families of sweet potato half-sibs in a randomized block design with four replications. We obtained the images at the plant level and used the ExpImage package of the R software to reduce the resolution and individualize one root per image. We grouped them according to their classifications regarding shape, peel color, and damage caused by insects. 600 roots of each class were destined for training the networks, while the rest was used to verify the quality of the fit. We used the python language on the Google Colab platform and the Keras library, considering the VGG-16, Inception-v3, ResNet-50, InceptionResNetV2, and EfficientNetB3 architectures. The InceptionResNetV2 architecture stood out with high accuracy in classifying individuals according to shape, insect damage, and peel color. Image analysis associated with deep learning may help develop applications used by rural producers and improve sweet potatoes, reducing subjectivity, labor, time, and financial resources in phenotyping.
publishDate 2023
dc.date.none.fl_str_mv 2023
2024-09-17T13:10:48Z
2024-09-17T13:10:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1038/s41598-023-34375-6
20452322
http://hdl.handle.net/1843/76535
url https://doi.org/10.1038/s41598-023-34375-6
http://hdl.handle.net/1843/76535
identifier_str_mv 20452322
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv scientific reports
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
Brasil
ICA - INSTITUTO DE CIÊNCIAS AGRÁRIAS
UFMG
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
Brasil
ICA - INSTITUTO DE CIÊNCIAS AGRÁRIAS
UFMG
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1816829825449459712