spelling |
Adriana Silva FrancaDavid Lee NelsonFlávio Meira BorémMarcelo Martins de SenaTania Maria Leite da SilveiraAna Paula Craig Carneireiro2019-08-13T02:02:47Z2019-08-13T02:02:47Z2013-06-28http://hdl.handle.net/1843/BUBD-9EBPQRA presença de grãos defeituosos é um importante parâmetro diretamente relacionado à qualidade do café, pois é associado a características sensoriais indesejáveis na bebida. Os grãos defeituosos que mais contribuem para a depreciação da bebida são os grãos pretos, ardidos e imaturos. O método convencional empregado na avaliação da qualidade de cafés torrados é baseado na análise sensorial da bebida ou prova de xícara, que demanda considerável tempo para ser executado, requer provadores treinados e depende de um controle rigoroso do grau de torração. Diante do exposto, este estudo teve como objetivo avaliar o potencial das técnicas espectroscópicas FTIR e NIR para a avaliação da qualidade de cafés com base na presença de grãos defeituosos. Grãos de café foram manualmente separados em cinco classes: sadio, ardido claro, ardido escuro, preto e imaturo. Cada uma das classes foi processada a três temperaturas (220 °C, 235 °C e 250 °C) e três níveis de torração (claro, médio e escuro) obtendo-se nove condições de torração. As amostras de café torrado foram então moídas, peneiradas e analisadas por DRIFTS, ATR-FTIR e NIR em um estudo classificatório. Os resultados de PCA indicaram que, com base nos espectros obtidos por DRIFTS, é possível discriminar as amostras em quatro grupos: (a) sadio, (b) preto, (c) ardido escuro e (d) ardido claro, com café imaturo dispersado entre os cafés ardidos. ATR-FTIR proporcionou a discriminação das amostras, apesar de não efetivamente, em dois principais grupos: (a) sadio e ardido claro, e (b) preto, ardido escuro e imaturo; enquanto NIR proporcionou a discriminação das amostras em três principais grupos: (a) sadios, ardido claro e imaturo, (b) ardido escuro e (c) preto. Nas três técnicas a variância entre as amostras levou à discriminação de cafés prioritariamente por suas classes, independentemente das suas condições de torração. Os modelos de classificação para os espectros obtidos por DRIFTS foram desenvolvidos por LDA enquanto que os modelos para ATR-FTIR e NIR foram desenvolvidos por rede Elástica. Porcentagens altas de amostras corretamente classificadas (até 100%) foram obtidas nos três modelos desenvolvidos. As variáveis discriminantes que contribuíram para a correta classificação de amostras nos modelos desenvolvidos por rede Elástica, para os dados de ATR-FTIR e NIR, foram extraídas e proporcionaram a seguinte interpretação dos modelos: (a) café sadio foi diretamente relacionado a altos teores de carboidratos e lipídios e baixos teores de proteína e/ou aminoácidos e cafeína; (b) café ardido claro foi relacionado a altos teores de carboidratos e cafeína; (c) café ardido escuro foi diretamente relacionado a altos teores de ácidos alifáticos e baixos teores de lipídios; (d) café preto foi relacionado a níveis altos proteínas e/ou aminoácidos e baixos níveis de lipídios; e (e) café imaturo foi relacionado a altos níveis de proteínas e/ou aminoácidos e cafeína e baixo conteúdo de lipídios. Misturas de grãos sadios e defeituosos, com %defeitos variando de 0% a 30% em passos de 3%, foram produzidas e analisadas por ATR-FTIR e NIR para um estudo quantitativo. PLSR foi utilizada para o desenvolvimento dos modelos quantitativos que proporcionaram resultados satisfatórios. Valores de RMSEP baixos como 2,6% e valores de R2 altos como 0.956 no conjunto de validação foram obtidos. De um modo geral, os modelos desenvolvidos com espectros obtidos por NIR apresentaram-se mais robustos e acurados em relação aos modelos de ATR-FTIR.A major parameter directly related to coffee quality is the presence of defective beans, which impart negative sensory aspects to the beverage. The defects that contribute the most to the depreciation of the beverage quality are black, sour and immature beans. The conventional method used to assess the quality of roasted coffees is based on sensory evaluation, which, although reliable, is time-consuming and requires trained cupper experts. In view of the aforementioned, the objective of the present study was to evaluate the potential of FTIR and NIR spectroscopy as practical techniques to assess the quality of coffees based on the presence of defective beans. Coffee beans were manually sorted into five classes: black, dark sour, immature, light sour and non-defective. Each of the coffee classes was roasted at three temperatures (220 °C, 235 °C and 250 °C) and to three roasting degrees (light, medium and dark) obtaining nine roasting conditions. Roasted coffee samples were ground, sieved and analyzed by DRIFTS, ATR-FTIR and NIR for a classification study. Results from PCA indicated that based on DRIFTS spectra, coffee samples could be discriminated into four major groups: (a) non-defective, (b) black, (c) dark sour and (d) light sour, with immature beans scattered among the sour samples. ATRFTIR provided the discrimination of the coffee samples, although not clearly, into two groups: (a) non-defective and light sour and (b) black, dark sour and immature, and NIR provided the discrimination into three major groups: (a) non-defective, light sour and immature, (b) dark sour, and (c) black. At all cases the variance among the samples led to the discrimination of the coffees primarily by their classes, regardless of roasting degree. Classification models for DRIFTS spectra were developed by LDA while classification models for ATR-FTIR and NIR were developed by Elastic net. High percentages of correct classification, up to 100%, were achieved with each of the techniques employed. The discriminating variables that contributed to the correct classification of the samples from the Elastic net models, for ATR-FTIR and NIR data, were extracted and provided the following interpretation of the models: (a) nondefective coffee was directly related to high levels of carbohydrates and lipids and lower levels of proteins and/or amino acids and caffeine; (b) light sour coffee was related to high levels of carbohydrates and caffeine; (c) dark sour coffee was directly associated with high levels of aliphatic acids and low levels of lipids; (d) black coffee was related to high levels of proteins and/or amino acids and low levels of lipids; and (e) immature coffee was related to high levels of proteins and/or amino acids and caffeine and low levels of lipids. In a second part of this study, blends of defective in admixture with non-defective coffee, with %defects ranging from 0% to 30% in steps of 3%, were produced and analyzed by ATR-FTIR and NIR for a quantification assay. PLSR was used to construct the models that provided satisfactory results. RMSEP values as low as 2.6% and R2 values as high as 0.956 in the validation set were achieved. Overall, NIR overcame ATR-FTIR in terms of robustness and accuracy.Universidade Federal de Minas GeraisUFMGAlimentosCafé AnáliseCafé QualidadeEspectroscopiaCafé PesquisaGrãos defeituososFTIRNIRCaféClassification and quantification of defective and non-defective coffees by FTIR and NIR spectroscopyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALteseanapaulacraig.pdfapplication/pdf4090941https://repositorio.ufmg.br/bitstream/1843/BUBD-9EBPQR/1/teseanapaulacraig.pdff1024c65845f011888338943b907f213MD51TEXTteseanapaulacraig.pdf.txtteseanapaulacraig.pdf.txtExtracted texttext/plain278946https://repositorio.ufmg.br/bitstream/1843/BUBD-9EBPQR/2/teseanapaulacraig.pdf.txt2ee0ba39236efa10c192512d70702daaMD521843/BUBD-9EBPQR2019-11-14 20:41:55.517oai:repositorio.ufmg.br:1843/BUBD-9EBPQRRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oaiopendoar:2019-11-14T23:41:55Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
|