Alguns aspectos de modelos espaço-temporais

Detalhes bibliográficos
Autor(a) principal: Leticia Cavalari Pinheiro
Data de Publicação: 2009
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/ICED-876J8H
Resumo: Este trabalho apresenta diferentes estudos envolvendo dados espaço-temporais. No Capítulo 1, estudamos as matrizes de covariância de modelos bayesianos com efeitos de interação espaço-temporal. Para isso, apresentamos os possívies tipos de efeitos aleatórios espaciais e temporais em modelos bayesianos e atribuimos a eles distribuições a priori comumente utilizadas. Construímos possíveis efeitos aleatórios espaço-temporais a partir da interação entre um efeito temporal e um espacial. Calculamos as matrizes de covariância a priori para os modelos com interação espaço-tempo e as escrevemos na forma de produto de Kronecker entre as matrizes de covariância a priori dos efeitos temporal e um espacial. Conseguimos visualizar mais claramente o efeito de cada tipo de interação possível, relacionando as matrizes de covariância a priori com as estruturas de dependência espacial e/ou temporal envolvidas nos modelos estudados. Como exemplo, apresentamos o estudo das matrizes de covariância a priori de dois modelos específicos existentes na literatura e fazemos suas inerpretações.No Capítulo 2, esstudamos métodos bayesianos para dados de área espaço-temporais.Buscamos modelos para serem ajustadps às taxas de incidência de Leishmaniose Visceral na cidade de Belo Horizonte, utilizando dados dos anos de 2000 a 2008. Fazemos o ajuste de três modelos distintos aos dados, sendo que um deles segue o procedimento clássico e os outros dois são modelos bayesianos. Comparamos os resultados obtidos e selecionamos o modelo que parece acompanhar melhor a evolução espaço-temporal das taxas de incidência de Leishmanise Visceral em Belo Horizonte. Conseguimos observar a evolução espaço-temporal da doença durante os anos estudados de forma mais clara. A partir desse modelo, há possibilidade de que sejam feitas porjeções para os próximos anos. Essas projeções podem ser úteis para xlassifiaca áreas prioritárias para ações de combate e prevenções da doença. No Caspítulo 3, utilizamos dados espaço-temporais na forma de padrões pontuais, onde a localização dos eventos é alatória. Apresentamos a função K¹², cujo objetivo é testar independência espacial entre dois processos pontuais estacionários observados dentro de um mesmo polígono. Por exemplo, queremos testar sse há independência entre a distribuição geográfica de uma espécie de àrvores A em relação à espécie B, tendo suas localizações dentro de um floresta. Isto é, queremos saber se árvores da espécie A tendem a se desenvolver mais próximas de árvores da espécie B, mais distantes destas, ou ainda se as duas distruibuições geográficas são independentes uma da outra. Baseados nessa função K¹², desenvolvemos outra função semelhante para lidar com dados espaço-temporais e denominamos Função Kt¹². Apresentamos a definição matemática, o algoritmo e os testes realizados em dados gerdos computacionalmente. Apresentamos ainda uma aplicação a dados reais de Leishmaniose Visceral na cidade de Belo Horizonte.
id UFMG_fb46837182f2533b9e294482923df187
oai_identifier_str oai:repositorio.ufmg.br:1843/ICED-876J8H
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Alguns aspectos de modelos espaço-temporaisMatrizDados espaço-temporaisTeste de independência espaço-temporalModelos bayesianos espaço-temporaisde covariância a prioriFunção KEstatistica TeseEste trabalho apresenta diferentes estudos envolvendo dados espaço-temporais. No Capítulo 1, estudamos as matrizes de covariância de modelos bayesianos com efeitos de interação espaço-temporal. Para isso, apresentamos os possívies tipos de efeitos aleatórios espaciais e temporais em modelos bayesianos e atribuimos a eles distribuições a priori comumente utilizadas. Construímos possíveis efeitos aleatórios espaço-temporais a partir da interação entre um efeito temporal e um espacial. Calculamos as matrizes de covariância a priori para os modelos com interação espaço-tempo e as escrevemos na forma de produto de Kronecker entre as matrizes de covariância a priori dos efeitos temporal e um espacial. Conseguimos visualizar mais claramente o efeito de cada tipo de interação possível, relacionando as matrizes de covariância a priori com as estruturas de dependência espacial e/ou temporal envolvidas nos modelos estudados. Como exemplo, apresentamos o estudo das matrizes de covariância a priori de dois modelos específicos existentes na literatura e fazemos suas inerpretações.No Capítulo 2, esstudamos métodos bayesianos para dados de área espaço-temporais.Buscamos modelos para serem ajustadps às taxas de incidência de Leishmaniose Visceral na cidade de Belo Horizonte, utilizando dados dos anos de 2000 a 2008. Fazemos o ajuste de três modelos distintos aos dados, sendo que um deles segue o procedimento clássico e os outros dois são modelos bayesianos. Comparamos os resultados obtidos e selecionamos o modelo que parece acompanhar melhor a evolução espaço-temporal das taxas de incidência de Leishmanise Visceral em Belo Horizonte. Conseguimos observar a evolução espaço-temporal da doença durante os anos estudados de forma mais clara. A partir desse modelo, há possibilidade de que sejam feitas porjeções para os próximos anos. Essas projeções podem ser úteis para xlassifiaca áreas prioritárias para ações de combate e prevenções da doença. No Caspítulo 3, utilizamos dados espaço-temporais na forma de padrões pontuais, onde a localização dos eventos é alatória. Apresentamos a função K¹², cujo objetivo é testar independência espacial entre dois processos pontuais estacionários observados dentro de um mesmo polígono. Por exemplo, queremos testar sse há independência entre a distribuição geográfica de uma espécie de àrvores A em relação à espécie B, tendo suas localizações dentro de um floresta. Isto é, queremos saber se árvores da espécie A tendem a se desenvolver mais próximas de árvores da espécie B, mais distantes destas, ou ainda se as duas distruibuições geográficas são independentes uma da outra. Baseados nessa função K¹², desenvolvemos outra função semelhante para lidar com dados espaço-temporais e denominamos Função Kt¹². Apresentamos a definição matemática, o algoritmo e os testes realizados em dados gerdos computacionalmente. Apresentamos ainda uma aplicação a dados reais de Leishmaniose Visceral na cidade de Belo Horizonte.Universidade Federal de Minas GeraisUFMGRenato Martins AssuncaoPatricia Klarmann ZiegelmannIlka Afonso ReisRosangela Helena LoschiValderio Anselmo ReisenLeticia Cavalari Pinheiro2019-08-11T17:58:56Z2019-08-11T17:58:56Z2009-12-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/1843/ICED-876J8Hinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2019-11-14T11:08:02Zoai:repositorio.ufmg.br:1843/ICED-876J8HRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2019-11-14T11:08:02Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Alguns aspectos de modelos espaço-temporais
title Alguns aspectos de modelos espaço-temporais
spellingShingle Alguns aspectos de modelos espaço-temporais
Leticia Cavalari Pinheiro
Matriz
Dados espaço-temporais
Teste de independência espaço-temporal
Modelos bayesianos espaço-temporais
de covariância a priori
Função K
Estatistica Tese
title_short Alguns aspectos de modelos espaço-temporais
title_full Alguns aspectos de modelos espaço-temporais
title_fullStr Alguns aspectos de modelos espaço-temporais
title_full_unstemmed Alguns aspectos de modelos espaço-temporais
title_sort Alguns aspectos de modelos espaço-temporais
author Leticia Cavalari Pinheiro
author_facet Leticia Cavalari Pinheiro
author_role author
dc.contributor.none.fl_str_mv Renato Martins Assuncao
Patricia Klarmann Ziegelmann
Ilka Afonso Reis
Rosangela Helena Loschi
Valderio Anselmo Reisen
dc.contributor.author.fl_str_mv Leticia Cavalari Pinheiro
dc.subject.por.fl_str_mv Matriz
Dados espaço-temporais
Teste de independência espaço-temporal
Modelos bayesianos espaço-temporais
de covariância a priori
Função K
Estatistica Tese
topic Matriz
Dados espaço-temporais
Teste de independência espaço-temporal
Modelos bayesianos espaço-temporais
de covariância a priori
Função K
Estatistica Tese
description Este trabalho apresenta diferentes estudos envolvendo dados espaço-temporais. No Capítulo 1, estudamos as matrizes de covariância de modelos bayesianos com efeitos de interação espaço-temporal. Para isso, apresentamos os possívies tipos de efeitos aleatórios espaciais e temporais em modelos bayesianos e atribuimos a eles distribuições a priori comumente utilizadas. Construímos possíveis efeitos aleatórios espaço-temporais a partir da interação entre um efeito temporal e um espacial. Calculamos as matrizes de covariância a priori para os modelos com interação espaço-tempo e as escrevemos na forma de produto de Kronecker entre as matrizes de covariância a priori dos efeitos temporal e um espacial. Conseguimos visualizar mais claramente o efeito de cada tipo de interação possível, relacionando as matrizes de covariância a priori com as estruturas de dependência espacial e/ou temporal envolvidas nos modelos estudados. Como exemplo, apresentamos o estudo das matrizes de covariância a priori de dois modelos específicos existentes na literatura e fazemos suas inerpretações.No Capítulo 2, esstudamos métodos bayesianos para dados de área espaço-temporais.Buscamos modelos para serem ajustadps às taxas de incidência de Leishmaniose Visceral na cidade de Belo Horizonte, utilizando dados dos anos de 2000 a 2008. Fazemos o ajuste de três modelos distintos aos dados, sendo que um deles segue o procedimento clássico e os outros dois são modelos bayesianos. Comparamos os resultados obtidos e selecionamos o modelo que parece acompanhar melhor a evolução espaço-temporal das taxas de incidência de Leishmanise Visceral em Belo Horizonte. Conseguimos observar a evolução espaço-temporal da doença durante os anos estudados de forma mais clara. A partir desse modelo, há possibilidade de que sejam feitas porjeções para os próximos anos. Essas projeções podem ser úteis para xlassifiaca áreas prioritárias para ações de combate e prevenções da doença. No Caspítulo 3, utilizamos dados espaço-temporais na forma de padrões pontuais, onde a localização dos eventos é alatória. Apresentamos a função K¹², cujo objetivo é testar independência espacial entre dois processos pontuais estacionários observados dentro de um mesmo polígono. Por exemplo, queremos testar sse há independência entre a distribuição geográfica de uma espécie de àrvores A em relação à espécie B, tendo suas localizações dentro de um floresta. Isto é, queremos saber se árvores da espécie A tendem a se desenvolver mais próximas de árvores da espécie B, mais distantes destas, ou ainda se as duas distruibuições geográficas são independentes uma da outra. Baseados nessa função K¹², desenvolvemos outra função semelhante para lidar com dados espaço-temporais e denominamos Função Kt¹². Apresentamos a definição matemática, o algoritmo e os testes realizados em dados gerdos computacionalmente. Apresentamos ainda uma aplicação a dados reais de Leishmaniose Visceral na cidade de Belo Horizonte.
publishDate 2009
dc.date.none.fl_str_mv 2009-12-18
2019-08-11T17:58:56Z
2019-08-11T17:58:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/ICED-876J8H
url http://hdl.handle.net/1843/ICED-876J8H
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
UFMG
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
UFMG
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1816829623375233024