Improving urban flood resilience
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFMS |
Texto Completo: | https://repositorio.ufms.br/handle/123456789/3702 |
Resumo: | Flooding in urban areas due to extreme stormwater in short time has caused material, economic, environmental and human losses in several places worldwide. The combination of climate change and increasing urbanization brings great challenges to planning and managing cities, because are considered the main responsible for increasing the severe flooding risks in urban areas. Therefore, it is necessary improving the urban flood resilience. Then, the main objective of the study presented in this doctoral thesis was to evaluate and develop techniques to improving the urban flood resilience. To achieve that, in the chapter 1, it was evaluated how Low Impact Development (LID) practices affect the resilience of stormwater drainage system under climate change scenarios. The resilience of the drainage system was quantified by means of a resilience index. The results indicate that the increased runoff peak can be mitigated satisfactory by using combined LID practices. In general, LID combinations showed reduction in runoff peak higher than 20%, and the best LID combination presented reduction up to 46%. The Weather radar data is useful for rainfall-runoff models used in urban flooding studies. Then, In the chapter 2, we developed a new bias correction approach based on Cumulative Distribution Function (CDF) matching method that focuses to correct biased radar rainfall estimates on daily, hour and sub-hour basis. The results showed that Nash-Sutcliffe Efficiency (NSE) index increased from 0.11 to 0.63 and Mean Absolute Error (MAE) decreased from 11.66 (biased data) to 6.97 mm (unbiased data) for all rainfall events. These results indicate that there was a significant improvement on the radar rainfall estimates. Additionally, in the chapter 3, a Decision Support System coupled with a mobile application is used to develop a flood alert system. The application based on Progressive Web Application was developed to support the visualization of flood status and to deliver early warning messages to population. The results found in this doctoral thesis is an essential information to decision making by the public authorities as well as to population for improving the urban flood resilience. |
id |
UFMS_084c1ca1685997ec76495b2d86f27e78 |
---|---|
oai_identifier_str |
oai:repositorio.ufms.br:123456789/3702 |
network_acronym_str |
UFMS |
network_name_str |
Repositório Institucional da UFMS |
repository_id_str |
2124 |
spelling |
2021-05-20T13:28:59Z2021-09-30T19:55:48Z2020https://repositorio.ufms.br/handle/123456789/3702Flooding in urban areas due to extreme stormwater in short time has caused material, economic, environmental and human losses in several places worldwide. The combination of climate change and increasing urbanization brings great challenges to planning and managing cities, because are considered the main responsible for increasing the severe flooding risks in urban areas. Therefore, it is necessary improving the urban flood resilience. Then, the main objective of the study presented in this doctoral thesis was to evaluate and develop techniques to improving the urban flood resilience. To achieve that, in the chapter 1, it was evaluated how Low Impact Development (LID) practices affect the resilience of stormwater drainage system under climate change scenarios. The resilience of the drainage system was quantified by means of a resilience index. The results indicate that the increased runoff peak can be mitigated satisfactory by using combined LID practices. In general, LID combinations showed reduction in runoff peak higher than 20%, and the best LID combination presented reduction up to 46%. The Weather radar data is useful for rainfall-runoff models used in urban flooding studies. Then, In the chapter 2, we developed a new bias correction approach based on Cumulative Distribution Function (CDF) matching method that focuses to correct biased radar rainfall estimates on daily, hour and sub-hour basis. The results showed that Nash-Sutcliffe Efficiency (NSE) index increased from 0.11 to 0.63 and Mean Absolute Error (MAE) decreased from 11.66 (biased data) to 6.97 mm (unbiased data) for all rainfall events. These results indicate that there was a significant improvement on the radar rainfall estimates. Additionally, in the chapter 3, a Decision Support System coupled with a mobile application is used to develop a flood alert system. The application based on Progressive Web Application was developed to support the visualization of flood status and to deliver early warning messages to population. The results found in this doctoral thesis is an essential information to decision making by the public authorities as well as to population for improving the urban flood resilience.Inundações em áreas urbanas devido a chuvas intensas tem causado perdas materiais, econômicas, ambientais e humanas em vários lugares do mundo. A combinação das mudanças climáticas com o aumento da urbanização traz grandes desafios para o planejamento e gestão das cidades, visto que são considerados os principais responsáveis pelo aumento do risco de inundações nas áreas urbanas. Portanto, é necessário melhorar a resiliência de áreas urbanas a eventos de inundação. Assim, o principal objetivo do estudo apresentado nesta tese de doutorado foi avaliar e desenvolver técnicas para melhorar a resiliências das áreas urbanas a eventos de inundação. Para isso, no capítulo 1, avaliou-se como a utilização de práticas de desenvolvimento urbano de baixo impacto (LIDs) afetam a resiliência do sistema de drenagem de águas pluviais considerando cenários de mudança climática. A resiliência do Sistema de drenagem foi quantificada por meio de um índice de resiliência. Os resultados indicam que o aumento pico de vazão do escoamento pode ser mitigado de forma satisfatória usando combinações de diferentes tipos de LIDs. Em geral, as combinações de LIDs apresentaram redução do pico de escoamento superior a 20%, e a melhor combinação apresentou redução de até 46%. Os dados de radar meteorológico são úteis em modelos chuva-vazão usados em estudos de inundações urbanas. Assim, no capítulo 2, desenvolvemos uma nova abordagem de correção de viés com base no método de correspondência utilizando funções de distribuição Acumulada (CDF) que se concentra em corrigir as estimativas de precipitação do radar considerando eventos diários, horários e sub horários. Os resultados mostraram que o índice de eficiência de Nash-Sutcliffe (NSE) aumentou de 0,11 para 0,63 e o erro médio absoluto (MAE) diminuiu de 11,66 para 6.97 mm após a aplicação do método. Esses resultados indicam que houve uma melhora significativa nas estimativas de precipitação do radar. Além disso, no capítulo 3, um Sistema de Suporte a Decisão acoplado a um aplicativo é usado para desenvolver um sistema de alerta de inundações. O aplicativo foi desenvolvido para permitir a visualização de manchas de inundação, o nível d’água em seções específicas e enviar mensagens de alerta à população. Os resultados encontrados nesta tese de doutorado são informações muito úteis para a tomada de decisão tanto do poder público quanto da população de forma a aumentar a resiliências de áreas urbanas a eventos de inundação.Fundação Universidade Federal de Mato Grosso do SulUFMSBrasilfloodImproving urban flood resilienceinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisPaulo Tarso Sanches de OliveiraTiago Souza Mattosinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSTHUMBNAILTese_Corrigida.pdf.jpgTese_Corrigida.pdf.jpgGenerated Thumbnailimage/jpeg1209https://repositorio.ufms.br/bitstream/123456789/3702/3/Tese_Corrigida.pdf.jpg00bc751c8faf203ba4aa11fbc49e5842MD53TEXTTese_Corrigida.pdf.txtTese_Corrigida.pdf.txtExtracted texttext/plain242548https://repositorio.ufms.br/bitstream/123456789/3702/2/Tese_Corrigida.pdf.txt88b0a1510dc84b0461caed56fe881fedMD52ORIGINALTese_Corrigida.pdfTese_Corrigida.pdfapplication/pdf3801317https://repositorio.ufms.br/bitstream/123456789/3702/1/Tese_Corrigida.pdff61bbc8c78ddca45695f319cb305149cMD51123456789/37022021-09-30 15:55:48.221oai:repositorio.ufms.br:123456789/3702Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242021-09-30T19:55:48Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false |
dc.title.pt_BR.fl_str_mv |
Improving urban flood resilience |
title |
Improving urban flood resilience |
spellingShingle |
Improving urban flood resilience Tiago Souza Mattos flood |
title_short |
Improving urban flood resilience |
title_full |
Improving urban flood resilience |
title_fullStr |
Improving urban flood resilience |
title_full_unstemmed |
Improving urban flood resilience |
title_sort |
Improving urban flood resilience |
author |
Tiago Souza Mattos |
author_facet |
Tiago Souza Mattos |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Paulo Tarso Sanches de Oliveira |
dc.contributor.author.fl_str_mv |
Tiago Souza Mattos |
contributor_str_mv |
Paulo Tarso Sanches de Oliveira |
dc.subject.por.fl_str_mv |
flood |
topic |
flood |
description |
Flooding in urban areas due to extreme stormwater in short time has caused material, economic, environmental and human losses in several places worldwide. The combination of climate change and increasing urbanization brings great challenges to planning and managing cities, because are considered the main responsible for increasing the severe flooding risks in urban areas. Therefore, it is necessary improving the urban flood resilience. Then, the main objective of the study presented in this doctoral thesis was to evaluate and develop techniques to improving the urban flood resilience. To achieve that, in the chapter 1, it was evaluated how Low Impact Development (LID) practices affect the resilience of stormwater drainage system under climate change scenarios. The resilience of the drainage system was quantified by means of a resilience index. The results indicate that the increased runoff peak can be mitigated satisfactory by using combined LID practices. In general, LID combinations showed reduction in runoff peak higher than 20%, and the best LID combination presented reduction up to 46%. The Weather radar data is useful for rainfall-runoff models used in urban flooding studies. Then, In the chapter 2, we developed a new bias correction approach based on Cumulative Distribution Function (CDF) matching method that focuses to correct biased radar rainfall estimates on daily, hour and sub-hour basis. The results showed that Nash-Sutcliffe Efficiency (NSE) index increased from 0.11 to 0.63 and Mean Absolute Error (MAE) decreased from 11.66 (biased data) to 6.97 mm (unbiased data) for all rainfall events. These results indicate that there was a significant improvement on the radar rainfall estimates. Additionally, in the chapter 3, a Decision Support System coupled with a mobile application is used to develop a flood alert system. The application based on Progressive Web Application was developed to support the visualization of flood status and to deliver early warning messages to population. The results found in this doctoral thesis is an essential information to decision making by the public authorities as well as to population for improving the urban flood resilience. |
publishDate |
2020 |
dc.date.issued.fl_str_mv |
2020 |
dc.date.accessioned.fl_str_mv |
2021-05-20T13:28:59Z |
dc.date.available.fl_str_mv |
2021-09-30T19:55:48Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufms.br/handle/123456789/3702 |
url |
https://repositorio.ufms.br/handle/123456789/3702 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
dc.publisher.initials.fl_str_mv |
UFMS |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMS instname:Universidade Federal de Mato Grosso do Sul (UFMS) instacron:UFMS |
instname_str |
Universidade Federal de Mato Grosso do Sul (UFMS) |
instacron_str |
UFMS |
institution |
UFMS |
reponame_str |
Repositório Institucional da UFMS |
collection |
Repositório Institucional da UFMS |
bitstream.url.fl_str_mv |
https://repositorio.ufms.br/bitstream/123456789/3702/3/Tese_Corrigida.pdf.jpg https://repositorio.ufms.br/bitstream/123456789/3702/2/Tese_Corrigida.pdf.txt https://repositorio.ufms.br/bitstream/123456789/3702/1/Tese_Corrigida.pdf |
bitstream.checksum.fl_str_mv |
00bc751c8faf203ba4aa11fbc49e5842 88b0a1510dc84b0461caed56fe881fed f61bbc8c78ddca45695f319cb305149c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS) |
repository.mail.fl_str_mv |
ri.prograd@ufms.br |
_version_ |
1815447996891922432 |