ARTIFICIAL INTELLIGENCE AND REMOTE SENSING IN URBAN HYDROLOGICAL APPLICATIONS

Detalhes bibliográficos
Autor(a) principal: Thales Shoiti Akiyama
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFMS
Texto Completo: https://repositorio.ufms.br/handle/123456789/4480
Resumo: Urban flooding is a big concern because it causes material, economic, environmental losses, and in the worst situations results in the death of living beings. To deal with these issues, preventive approaches must be implemented to minimize such impacts. Although there are researches seeking to solve the issue of flooding in urban areas, there are few works related to Deep Learning (DL) techniques for monitoring water resources. Due to this problem, this paper investigates and proposes DL-based methods for water monitoring. First, the performance of the SegNet semantic segmentation model in delineating water bodies in RGB images was analyzed, presenting an accuracy above 97%, showing that the model is suitable for water segmentation. Next, an automated approach was introduced in water level measurements combining DL and photogrammetry, showing correlations between reference measurements and the proposed approach of 93%. We also analyzed different configurations for SegNet evaluating the performance of the models for generalization tasks in segmenting different water surfaces, showing that techniques such as transfer learning and fine-tuning improved the results. Furthermore, it was shown that there is a reduction in the segmentation accuracy when the number of labeled images used in the network training is reduced. Finally, the performance of the Space-Time Correspondence Network (STCN) model in the segmentation of water based on video structures was analyzed, which the results show that the model is accurate in delimiting the contours of a body of water in different situations. The major contribution of this study is the optimization of information concerning a body of water using techniques different from traditional measurement systems.
id UFMS_4cc2aac7d6340d62d3c16927b4cde1d1
oai_identifier_str oai:repositorio.ufms.br:123456789/4480
network_acronym_str UFMS
network_name_str Repositório Institucional da UFMS
repository_id_str 2124
spelling 2022-03-15T17:44:49Z2022-03-15T17:44:49Z2022https://repositorio.ufms.br/handle/123456789/4480Urban flooding is a big concern because it causes material, economic, environmental losses, and in the worst situations results in the death of living beings. To deal with these issues, preventive approaches must be implemented to minimize such impacts. Although there are researches seeking to solve the issue of flooding in urban areas, there are few works related to Deep Learning (DL) techniques for monitoring water resources. Due to this problem, this paper investigates and proposes DL-based methods for water monitoring. First, the performance of the SegNet semantic segmentation model in delineating water bodies in RGB images was analyzed, presenting an accuracy above 97%, showing that the model is suitable for water segmentation. Next, an automated approach was introduced in water level measurements combining DL and photogrammetry, showing correlations between reference measurements and the proposed approach of 93%. We also analyzed different configurations for SegNet evaluating the performance of the models for generalization tasks in segmenting different water surfaces, showing that techniques such as transfer learning and fine-tuning improved the results. Furthermore, it was shown that there is a reduction in the segmentation accuracy when the number of labeled images used in the network training is reduced. Finally, the performance of the Space-Time Correspondence Network (STCN) model in the segmentation of water based on video structures was analyzed, which the results show that the model is accurate in delimiting the contours of a body of water in different situations. The major contribution of this study is the optimization of information concerning a body of water using techniques different from traditional measurement systems.As inundações urbanas despertam uma grande preocupação, pois ocasionam perdas materiais, econômicas, ambientais, e nas piores situações resultam em mortes de seres vivos. Para lidar com essas questões, abordagens preventivas devem ser implementadas para minimizar tais impactos. Embora existam pesquisas procurando solucionar a questão da inundação em áreas urbanas, são escassos os trabalhos relacionados a técnicas de Deep Learning (DL) para monitorar recursos hídricos. Devido a esta problemática, este trabalho investiga e propõe métodos baseado em DL para monitoramento hídrico. Primeiramente, analisou-se a performance do modelo em segmentação semântica SegNet na delimitação de corpos da água em imagens RGB, apresentando uma acurácia acima de 97%, mostrando que o modelo é adequado para a segmentação de água. Em seguida, introduziu-se uma abordagem automatizada em medições do nível da água combinando DL e fotogrametria, apresentando correlações entre as medidas de referência e a abordagem proposta de 93%. Também analisou-se diferentes configurações para a SegNet avaliando a performance dos modelos para tarefas de generalização na segmentação de diferentes superfícies aquáticas, mostrando que técnicas como transfer learning e fine-tuning melhoraram os resultados. Além disso, mostrou-se que há uma redução na acurácia da segmentação quando se reduz a quantidade de imagens rotuladas utilizadas no treinamento da rede. Por fim, analisou-se a performance do modelo Space-Time Correspondence Network (STCN) na segmentação da água baseado em estruturas de vídeos, no qual os resultados mostram que o modelo é acurado em delimitar os contornos de um corpo da água em diferentes situações. A maior contribuição deste estudo é a otimização das informações relativas a um corpo de água utilizando técnicas diferentes dos sistemas tradicionais de medição.Fundação Universidade Federal de Mato Grosso do SulUFMSBrasilREMOTE SENSINGARTIFICIAL INTELLIGENCE AND REMOTE SENSING IN URBAN HYDROLOGICAL APPLICATIONSinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisJose Marcato JuniorThales Shoiti Akiyamainfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSTHUMBNAILTese_Doutorado_Akiyama_Final.pdf.jpgTese_Doutorado_Akiyama_Final.pdf.jpgGenerated Thumbnailimage/jpeg1254https://repositorio.ufms.br/bitstream/123456789/4480/3/Tese_Doutorado_Akiyama_Final.pdf.jpg491e9e539463071e0f0e85c38830798bMD53TEXTTese_Doutorado_Akiyama_Final.pdf.txtTese_Doutorado_Akiyama_Final.pdf.txtExtracted texttext/plain199088https://repositorio.ufms.br/bitstream/123456789/4480/2/Tese_Doutorado_Akiyama_Final.pdf.txt15483ed72fad783b29839462c93c5aa2MD52ORIGINALTese_Doutorado_Akiyama_Final.pdfTese_Doutorado_Akiyama_Final.pdfapplication/pdf6033657https://repositorio.ufms.br/bitstream/123456789/4480/1/Tese_Doutorado_Akiyama_Final.pdfb29225b53dc8ba0949c7eafdeb4a5152MD51123456789/44802022-03-16 03:01:26.269oai:repositorio.ufms.br:123456789/4480Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242022-03-16T07:01:26Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false
dc.title.pt_BR.fl_str_mv ARTIFICIAL INTELLIGENCE AND REMOTE SENSING IN URBAN HYDROLOGICAL APPLICATIONS
title ARTIFICIAL INTELLIGENCE AND REMOTE SENSING IN URBAN HYDROLOGICAL APPLICATIONS
spellingShingle ARTIFICIAL INTELLIGENCE AND REMOTE SENSING IN URBAN HYDROLOGICAL APPLICATIONS
Thales Shoiti Akiyama
REMOTE SENSING
title_short ARTIFICIAL INTELLIGENCE AND REMOTE SENSING IN URBAN HYDROLOGICAL APPLICATIONS
title_full ARTIFICIAL INTELLIGENCE AND REMOTE SENSING IN URBAN HYDROLOGICAL APPLICATIONS
title_fullStr ARTIFICIAL INTELLIGENCE AND REMOTE SENSING IN URBAN HYDROLOGICAL APPLICATIONS
title_full_unstemmed ARTIFICIAL INTELLIGENCE AND REMOTE SENSING IN URBAN HYDROLOGICAL APPLICATIONS
title_sort ARTIFICIAL INTELLIGENCE AND REMOTE SENSING IN URBAN HYDROLOGICAL APPLICATIONS
author Thales Shoiti Akiyama
author_facet Thales Shoiti Akiyama
author_role author
dc.contributor.advisor1.fl_str_mv Jose Marcato Junior
dc.contributor.author.fl_str_mv Thales Shoiti Akiyama
contributor_str_mv Jose Marcato Junior
dc.subject.por.fl_str_mv REMOTE SENSING
topic REMOTE SENSING
description Urban flooding is a big concern because it causes material, economic, environmental losses, and in the worst situations results in the death of living beings. To deal with these issues, preventive approaches must be implemented to minimize such impacts. Although there are researches seeking to solve the issue of flooding in urban areas, there are few works related to Deep Learning (DL) techniques for monitoring water resources. Due to this problem, this paper investigates and proposes DL-based methods for water monitoring. First, the performance of the SegNet semantic segmentation model in delineating water bodies in RGB images was analyzed, presenting an accuracy above 97%, showing that the model is suitable for water segmentation. Next, an automated approach was introduced in water level measurements combining DL and photogrammetry, showing correlations between reference measurements and the proposed approach of 93%. We also analyzed different configurations for SegNet evaluating the performance of the models for generalization tasks in segmenting different water surfaces, showing that techniques such as transfer learning and fine-tuning improved the results. Furthermore, it was shown that there is a reduction in the segmentation accuracy when the number of labeled images used in the network training is reduced. Finally, the performance of the Space-Time Correspondence Network (STCN) model in the segmentation of water based on video structures was analyzed, which the results show that the model is accurate in delimiting the contours of a body of water in different situations. The major contribution of this study is the optimization of information concerning a body of water using techniques different from traditional measurement systems.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-03-15T17:44:49Z
dc.date.available.fl_str_mv 2022-03-15T17:44:49Z
dc.date.issued.fl_str_mv 2022
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufms.br/handle/123456789/4480
url https://repositorio.ufms.br/handle/123456789/4480
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Fundação Universidade Federal de Mato Grosso do Sul
dc.publisher.initials.fl_str_mv UFMS
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Fundação Universidade Federal de Mato Grosso do Sul
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMS
instname:Universidade Federal de Mato Grosso do Sul (UFMS)
instacron:UFMS
instname_str Universidade Federal de Mato Grosso do Sul (UFMS)
instacron_str UFMS
institution UFMS
reponame_str Repositório Institucional da UFMS
collection Repositório Institucional da UFMS
bitstream.url.fl_str_mv https://repositorio.ufms.br/bitstream/123456789/4480/3/Tese_Doutorado_Akiyama_Final.pdf.jpg
https://repositorio.ufms.br/bitstream/123456789/4480/2/Tese_Doutorado_Akiyama_Final.pdf.txt
https://repositorio.ufms.br/bitstream/123456789/4480/1/Tese_Doutorado_Akiyama_Final.pdf
bitstream.checksum.fl_str_mv 491e9e539463071e0f0e85c38830798b
15483ed72fad783b29839462c93c5aa2
b29225b53dc8ba0949c7eafdeb4a5152
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)
repository.mail.fl_str_mv ri.prograd@ufms.br
_version_ 1818603587255664640