Deep Learning Approaches to Segment Eucalyptus Tree Images
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFMS |
Texto Completo: | https://repositorio.ufms.br/handle/123456789/5639 |
Resumo: | Agribusiness is one of Brazil's primary sources of wealth and employment, representing a significant portion of the national Gross Domestic Product (GDP). In 2021, the agribusiness sector reached 27.4% of the Brazilian GDP, the highest share since 2004, when it reached 27.53%. The forest-based industry is an important segment of agribusiness, as it provides vital inputs for various industrial sectors, such as wood products, furniture, and paper. Planted forests play an essential role in carbon capture and other ecosystem services, with eucalyptus being the most used tree, with 7.3 million hectares of eucalyptus forests in 2021. Tree mapping is vital for the economy and environment, and artificial intelligence-based solutions are valuable decision support tools in agriculture and tree mapping. Consequently, there is a strong incentive to look for more comprehensive solutions that use advanced deep learning technologies for this area. Thus, this work aims to evaluate efficient deep learning convolutional neural networks for image segmentation of eucalyptus trunks and present a specific segmentation proposal for eucalyptus trunks that can benefit agricultural applications or decision support tools for tree mapping. This work was divided into two main steps to evaluate the segmentation networks and create a post-processing technique. The first stage of this study evaluated the efficiency of deep learning networks in the semantic segmentation of eucalyptus trunks in panoramic images in RGB colors captured at ground level. The deep learning networks FCN, GCNet, ANN, and PointRend were evaluated in this step for image segmentation of eucalyptus trunks. Training and evaluation of the networks were performed using a five-step cross-validation approach, using a dataset composed of manually annotated images of a eucalyptus forest. The initial dataset was created using a spherical field of view camera. It included a variety of eucalyptus trees with distinct characteristics, such as variations in distances between trunks and changes in curvature, sizes, and diameters of trunks, which pose significant challenges for deep learning methods in semantic segmentation tasks. For the first stage of this study, the FCN model presented the best performance, with pixel precision of 78.87% and mIoU of 70.06%, in addition to obtaining a good inference time. The GCNet and ANN networks also performed similarly to the FCN but with negative impacts on their ability to generalize tasks in specific contexts. The study concludes that the FCN was the most robust, among the evaluated methods, for semantic segmentation of images of trees in panoramic images. This assessment of segmentation networks can be a crucial step toward developing other relevant tools in forest management, such as estimating trunk height and diameter. The second step of this work was to create and evaluate a post-processing technique for RGB-D images to improve the results of current semantic networks for segmentation in eucalyptus images. We created a new dataset image using images obtained from a stereo camera, which captured not only the color information (RGB) but also the depth information, which allowed an even more complete view of the eucalyptus forest. After the construction of the new image bank, its annotation was carried out by specialists. The next stage of this study was the evaluation of six image semantic segmentation networks and the comparison with results before and after applying the post-processing technique. We trained, evaluated, and tested the FCN, ANN, GCNet, SETR, SegFormer, and DPT networks on the annotated images. The post-processing technique significantly improved the results of the tested image segmentation networks, with a significant gain of 24.13% in IoU and 13.11% in F1-score for convolution-based networks and 12.49% for IoU and 6.56% in F1-score for transformer-based networks. The SegFormer network obtained the best results in all tests before and after applying the technique. The technique also effectively corrected segmentation flaws, erosion, and dilation errors, resulting in more accurate edges and better-delimited trunks. The average computational cost of the technique was 0.019 seconds, indicating that it can be applied in segmentation networks without compromising performance. The results obtained by applying the post-processing technique propose an innovative approach with low computational cost and significant improvements to existing segmentation networks. |
id |
UFMS_4ea0c4dbb17a0c4451c80527e6eb8a30 |
---|---|
oai_identifier_str |
oai:repositorio.ufms.br:123456789/5639 |
network_acronym_str |
UFMS |
network_name_str |
Repositório Institucional da UFMS |
repository_id_str |
2124 |
spelling |
2023-02-24T23:53:09Z2023-02-24T23:53:09Z2023https://repositorio.ufms.br/handle/123456789/5639Agribusiness is one of Brazil's primary sources of wealth and employment, representing a significant portion of the national Gross Domestic Product (GDP). In 2021, the agribusiness sector reached 27.4% of the Brazilian GDP, the highest share since 2004, when it reached 27.53%. The forest-based industry is an important segment of agribusiness, as it provides vital inputs for various industrial sectors, such as wood products, furniture, and paper. Planted forests play an essential role in carbon capture and other ecosystem services, with eucalyptus being the most used tree, with 7.3 million hectares of eucalyptus forests in 2021. Tree mapping is vital for the economy and environment, and artificial intelligence-based solutions are valuable decision support tools in agriculture and tree mapping. Consequently, there is a strong incentive to look for more comprehensive solutions that use advanced deep learning technologies for this area. Thus, this work aims to evaluate efficient deep learning convolutional neural networks for image segmentation of eucalyptus trunks and present a specific segmentation proposal for eucalyptus trunks that can benefit agricultural applications or decision support tools for tree mapping. This work was divided into two main steps to evaluate the segmentation networks and create a post-processing technique. The first stage of this study evaluated the efficiency of deep learning networks in the semantic segmentation of eucalyptus trunks in panoramic images in RGB colors captured at ground level. The deep learning networks FCN, GCNet, ANN, and PointRend were evaluated in this step for image segmentation of eucalyptus trunks. Training and evaluation of the networks were performed using a five-step cross-validation approach, using a dataset composed of manually annotated images of a eucalyptus forest. The initial dataset was created using a spherical field of view camera. It included a variety of eucalyptus trees with distinct characteristics, such as variations in distances between trunks and changes in curvature, sizes, and diameters of trunks, which pose significant challenges for deep learning methods in semantic segmentation tasks. For the first stage of this study, the FCN model presented the best performance, with pixel precision of 78.87% and mIoU of 70.06%, in addition to obtaining a good inference time. The GCNet and ANN networks also performed similarly to the FCN but with negative impacts on their ability to generalize tasks in specific contexts. The study concludes that the FCN was the most robust, among the evaluated methods, for semantic segmentation of images of trees in panoramic images. This assessment of segmentation networks can be a crucial step toward developing other relevant tools in forest management, such as estimating trunk height and diameter. The second step of this work was to create and evaluate a post-processing technique for RGB-D images to improve the results of current semantic networks for segmentation in eucalyptus images. We created a new dataset image using images obtained from a stereo camera, which captured not only the color information (RGB) but also the depth information, which allowed an even more complete view of the eucalyptus forest. After the construction of the new image bank, its annotation was carried out by specialists. The next stage of this study was the evaluation of six image semantic segmentation networks and the comparison with results before and after applying the post-processing technique. We trained, evaluated, and tested the FCN, ANN, GCNet, SETR, SegFormer, and DPT networks on the annotated images. The post-processing technique significantly improved the results of the tested image segmentation networks, with a significant gain of 24.13% in IoU and 13.11% in F1-score for convolution-based networks and 12.49% for IoU and 6.56% in F1-score for transformer-based networks. The SegFormer network obtained the best results in all tests before and after applying the technique. The technique also effectively corrected segmentation flaws, erosion, and dilation errors, resulting in more accurate edges and better-delimited trunks. The average computational cost of the technique was 0.019 seconds, indicating that it can be applied in segmentation networks without compromising performance. The results obtained by applying the post-processing technique propose an innovative approach with low computational cost and significant improvements to existing segmentation networks.O agronegócio é uma das principais fontes de riqueza e emprego do Brasil, representando uma parcela significativa do Produto Interno Bruto (PIB) nacional. Em 2021, o setor do agronegócio atingiu 27,4% do PIB brasileiro, a maior participação desde 2004, quando atingiu 27,53%. A indústria de base florestal é um importante segmento do agronegócio, pois fornece insumos vitais para diversos setores industriais, como produtos de madeira, móveis e papel. As florestas plantadas desempenham um papel essencial na captura de carbono e outros serviços ecossistêmicos, sendo o eucalipto a árvore mais utilizada, com 7,3 milhões de hectares de florestas de eucalipto em 2021. O mapeamento de árvores é vital para a economia e o meio ambiente, e as soluções baseadas em inteligência artificial são valiosas ferramentas de apoio à decisão em agricultura e mapeamento de árvores. Consequentemente, há um forte incentivo para buscar soluções mais abrangentes que utilizem tecnologias avançadas de aprendizado profundo para essa área. Assim, este trabalho tem como objetivo avaliar redes neurais convolucionais de aprendizado profundo eficientes para segmentação de imagens de troncos de eucalipto e apresentar uma proposta de segmentação específica para troncos de eucalipto que pode beneficiar aplicações agrícolas ou ferramentas de apoio à decisão para mapeamento de árvores. Este trabalho foi dividido em duas etapas principais para avaliar as redes de segmentação e criar uma técnica de pós-processamento. A primeira etapa deste estudo avaliou a eficiência de redes de aprendizado profundo na segmentação semântica de troncos de eucalipto em imagens panorâmicas em cores RGB capturadas no nível do solo. As redes de aprendizado profundo FCN, GCNet, ANN e PointRend foram avaliadas nesta etapa para segmentação de imagens de troncos de eucalipto. O treinamento e a avaliação das redes foram realizados usando uma abordagem de validação cruzada de cinco etapas, usando um conjunto de dados composto por imagens anotadas manualmente de uma floresta de eucalipto. O conjunto de dados inicial foi criado usando um campo de visão esférico da câmera. Ele incluiu uma variedade de eucaliptos com características distintas, como variações nas distâncias entre os troncos e mudanças na curvatura, tamanhos e diâmetros dos troncos, que representam desafios significativos para métodos de aprendizado profundo em tarefas de segmentação semântica. Para a primeira etapa deste estudo, o modelo FCN apresentou o melhor desempenho, com precisão de pixel de 78,87% e mIoU de 70,06%, além de obter um bom tempo de inferência. As redes GCNet e ANN também tiveram desempenho semelhante ao FCN, mas com impactos negativos em sua capacidade de generalizar tarefas em contextos específicos. O estudo conclui que o FCN foi o mais robusto, dentre os métodos avaliados, para segmentação semântica de imagens de árvores em imagens panorâmicas. Essa avaliação das redes de segmentação pode ser um passo crucial para o desenvolvimento de outras ferramentas relevantes no manejo florestal, como a estimativa de altura e diâmetro do tronco. A segunda etapa deste trabalho foi criar e avaliar uma técnica de pós-processamento de imagens RGB-D para melhorar os resultados das redes semânticas atuais para segmentação em imagens de eucalipto. Criamos uma nova imagem de conjunto de dados a partir de imagens obtidas de uma câmera estéreo, que capturou não apenas as informações de cor (RGB), mas também as informações de profundidade, o que permitiu uma visão ainda mais completa da floresta de eucalipto. Após a construção do novo banco de imagens, sua anotação foi realizada por especialistas. A próxima etapa deste estudo foi a avaliação de seis redes de segmentação semântica de imagens e a comparação com os resultados antes e depois da aplicação da técnica de pós-processamento. Treinamos, avaliamos e testamos as redes FCN, ANN, GCNet, SETR, SegFormer e DPT nas imagens anotadas. A técnica de pós-processamento melhorou significativamente os resultados das redes de segmentação de imagens testadas, com um ganho significativo de 24,13% em IoU e 13,11% em F1-score para redes baseadas em convolução e 12,49% para IoU e 6,56% em F1-score para redes baseadas em transformadores. A rede SegFormer obteve os melhores resultados em todos os testes antes e após a aplicação da técnica. A técnica também corrigiu com eficácia falhas de segmentação, erosão e erros de dilatação, resultando em bordas mais precisas e troncos mais bem delimitados. O custo computacional médio da técnica foi de 0,019 segundos, indicando que ela pode ser aplicada em redes de segmentação sem comprometer o desempenho. Os resultados obtidos pela aplicação da técnica de pós-processamento propõem uma abordagem inovadora com baixo custo computacional e melhorias significativas para as redes de segmentação existentes.Fundação Universidade Federal de Mato Grosso do SulUFMSBrasilImage SegmentationConvolutional Neural NetworksEucalyptus Tree.Deep Learning Approaches to Segment Eucalyptus Tree Imagesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisWesley Nunes GoncalvesMÁRIO DE ARAÚJO CARVALHOinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSORIGINALrevised_dissertation_segmentation_trees_mario_carvalho_ppgcc_facom_ufms_2023_02_17.pdfrevised_dissertation_segmentation_trees_mario_carvalho_ppgcc_facom_ufms_2023_02_17.pdfapplication/pdf20898833https://repositorio.ufms.br/bitstream/123456789/5639/-1/revised_dissertation_segmentation_trees_mario_carvalho_ppgcc_facom_ufms_2023_02_17.pdf93dffdc1383cfa89218358ee3a5888f7MD5-1123456789/56392023-02-24 19:53:10.488oai:repositorio.ufms.br:123456789/5639Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242023-02-24T23:53:10Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false |
dc.title.pt_BR.fl_str_mv |
Deep Learning Approaches to Segment Eucalyptus Tree Images |
title |
Deep Learning Approaches to Segment Eucalyptus Tree Images |
spellingShingle |
Deep Learning Approaches to Segment Eucalyptus Tree Images MÁRIO DE ARAÚJO CARVALHO Image Segmentation Convolutional Neural Networks Eucalyptus Tree. |
title_short |
Deep Learning Approaches to Segment Eucalyptus Tree Images |
title_full |
Deep Learning Approaches to Segment Eucalyptus Tree Images |
title_fullStr |
Deep Learning Approaches to Segment Eucalyptus Tree Images |
title_full_unstemmed |
Deep Learning Approaches to Segment Eucalyptus Tree Images |
title_sort |
Deep Learning Approaches to Segment Eucalyptus Tree Images |
author |
MÁRIO DE ARAÚJO CARVALHO |
author_facet |
MÁRIO DE ARAÚJO CARVALHO |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Wesley Nunes Goncalves |
dc.contributor.author.fl_str_mv |
MÁRIO DE ARAÚJO CARVALHO |
contributor_str_mv |
Wesley Nunes Goncalves |
dc.subject.por.fl_str_mv |
Image Segmentation Convolutional Neural Networks Eucalyptus Tree. |
topic |
Image Segmentation Convolutional Neural Networks Eucalyptus Tree. |
description |
Agribusiness is one of Brazil's primary sources of wealth and employment, representing a significant portion of the national Gross Domestic Product (GDP). In 2021, the agribusiness sector reached 27.4% of the Brazilian GDP, the highest share since 2004, when it reached 27.53%. The forest-based industry is an important segment of agribusiness, as it provides vital inputs for various industrial sectors, such as wood products, furniture, and paper. Planted forests play an essential role in carbon capture and other ecosystem services, with eucalyptus being the most used tree, with 7.3 million hectares of eucalyptus forests in 2021. Tree mapping is vital for the economy and environment, and artificial intelligence-based solutions are valuable decision support tools in agriculture and tree mapping. Consequently, there is a strong incentive to look for more comprehensive solutions that use advanced deep learning technologies for this area. Thus, this work aims to evaluate efficient deep learning convolutional neural networks for image segmentation of eucalyptus trunks and present a specific segmentation proposal for eucalyptus trunks that can benefit agricultural applications or decision support tools for tree mapping. This work was divided into two main steps to evaluate the segmentation networks and create a post-processing technique. The first stage of this study evaluated the efficiency of deep learning networks in the semantic segmentation of eucalyptus trunks in panoramic images in RGB colors captured at ground level. The deep learning networks FCN, GCNet, ANN, and PointRend were evaluated in this step for image segmentation of eucalyptus trunks. Training and evaluation of the networks were performed using a five-step cross-validation approach, using a dataset composed of manually annotated images of a eucalyptus forest. The initial dataset was created using a spherical field of view camera. It included a variety of eucalyptus trees with distinct characteristics, such as variations in distances between trunks and changes in curvature, sizes, and diameters of trunks, which pose significant challenges for deep learning methods in semantic segmentation tasks. For the first stage of this study, the FCN model presented the best performance, with pixel precision of 78.87% and mIoU of 70.06%, in addition to obtaining a good inference time. The GCNet and ANN networks also performed similarly to the FCN but with negative impacts on their ability to generalize tasks in specific contexts. The study concludes that the FCN was the most robust, among the evaluated methods, for semantic segmentation of images of trees in panoramic images. This assessment of segmentation networks can be a crucial step toward developing other relevant tools in forest management, such as estimating trunk height and diameter. The second step of this work was to create and evaluate a post-processing technique for RGB-D images to improve the results of current semantic networks for segmentation in eucalyptus images. We created a new dataset image using images obtained from a stereo camera, which captured not only the color information (RGB) but also the depth information, which allowed an even more complete view of the eucalyptus forest. After the construction of the new image bank, its annotation was carried out by specialists. The next stage of this study was the evaluation of six image semantic segmentation networks and the comparison with results before and after applying the post-processing technique. We trained, evaluated, and tested the FCN, ANN, GCNet, SETR, SegFormer, and DPT networks on the annotated images. The post-processing technique significantly improved the results of the tested image segmentation networks, with a significant gain of 24.13% in IoU and 13.11% in F1-score for convolution-based networks and 12.49% for IoU and 6.56% in F1-score for transformer-based networks. The SegFormer network obtained the best results in all tests before and after applying the technique. The technique also effectively corrected segmentation flaws, erosion, and dilation errors, resulting in more accurate edges and better-delimited trunks. The average computational cost of the technique was 0.019 seconds, indicating that it can be applied in segmentation networks without compromising performance. The results obtained by applying the post-processing technique propose an innovative approach with low computational cost and significant improvements to existing segmentation networks. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-02-24T23:53:09Z |
dc.date.available.fl_str_mv |
2023-02-24T23:53:09Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufms.br/handle/123456789/5639 |
url |
https://repositorio.ufms.br/handle/123456789/5639 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
dc.publisher.initials.fl_str_mv |
UFMS |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMS instname:Universidade Federal de Mato Grosso do Sul (UFMS) instacron:UFMS |
instname_str |
Universidade Federal de Mato Grosso do Sul (UFMS) |
instacron_str |
UFMS |
institution |
UFMS |
reponame_str |
Repositório Institucional da UFMS |
collection |
Repositório Institucional da UFMS |
bitstream.url.fl_str_mv |
https://repositorio.ufms.br/bitstream/123456789/5639/-1/revised_dissertation_segmentation_trees_mario_carvalho_ppgcc_facom_ufms_2023_02_17.pdf |
bitstream.checksum.fl_str_mv |
93dffdc1383cfa89218358ee3a5888f7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS) |
repository.mail.fl_str_mv |
ri.prograd@ufms.br |
_version_ |
1818603560130052096 |