Resposta hiperespectral da cultura da soja em função da severidade da mancha alvo (Corynespora cassiicola)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFMS |
Texto Completo: | https://repositorio.ufms.br/handle/123456789/8403 |
Resumo: | In the current context of agriculture, productive efficiency is fundamental for farmers, but diseases, such as target spot, continue to harm soybean productivity. Remote sensing, especially hyperspectral sensing, can detect these diseases, but it has disadvantages such as cost and complexity. The objectives of this work were: to identify the input variable (Bands, Vegetation Indices and Reflectance) most appropriate for the metrics worked on (Correct Classification, Kappa and F-score) and to identify whether there is a relationship between the spectral bands and vegetation indices with target stain severity levels, yield and vigrain mass. The experiment was carried out in the 2022/23 harvest on a farm in Costa Rica/MS/BR, conducted with different fungicide treatments, to obtain different levels of disease severity. A spectroradiometer and remotely piloted aircraft imaging were used to collect spectral data from the leaves. The data was subjected to machine learning analysis using different algorithms. The RF (Random Forest) and SVM (Support Vector Machine) algorithms showed better performance in classifying the severity levels of the target spot, using reflectance. Multivariate analysis showed that healthy leaves stood out at specific wavelengths, while diseased leaves showed different spectral patterns. Disease detection using hyperspectral sensors has enabled detailed information acquisition. The study demonstrated that remote sensing, especially hyperspectral sensors and machine learning techniques can be effective in early detection and monitoring of target spot in soybean crops, allowing rapid action to control and prevent productivity losses. Keywords: Glycine max. Remote Sensing. Precision Agriculture. |
id |
UFMS_6116e70035da181f49a5b008ecd1660d |
---|---|
oai_identifier_str |
oai:repositorio.ufms.br:123456789/8403 |
network_acronym_str |
UFMS |
network_name_str |
Repositório Institucional da UFMS |
repository_id_str |
2124 |
spelling |
2024-02-15T17:02:06Z2024-02-15T17:02:06Z2023https://repositorio.ufms.br/handle/123456789/8403In the current context of agriculture, productive efficiency is fundamental for farmers, but diseases, such as target spot, continue to harm soybean productivity. Remote sensing, especially hyperspectral sensing, can detect these diseases, but it has disadvantages such as cost and complexity. The objectives of this work were: to identify the input variable (Bands, Vegetation Indices and Reflectance) most appropriate for the metrics worked on (Correct Classification, Kappa and F-score) and to identify whether there is a relationship between the spectral bands and vegetation indices with target stain severity levels, yield and vigrain mass. The experiment was carried out in the 2022/23 harvest on a farm in Costa Rica/MS/BR, conducted with different fungicide treatments, to obtain different levels of disease severity. A spectroradiometer and remotely piloted aircraft imaging were used to collect spectral data from the leaves. The data was subjected to machine learning analysis using different algorithms. The RF (Random Forest) and SVM (Support Vector Machine) algorithms showed better performance in classifying the severity levels of the target spot, using reflectance. Multivariate analysis showed that healthy leaves stood out at specific wavelengths, while diseased leaves showed different spectral patterns. Disease detection using hyperspectral sensors has enabled detailed information acquisition. The study demonstrated that remote sensing, especially hyperspectral sensors and machine learning techniques can be effective in early detection and monitoring of target spot in soybean crops, allowing rapid action to control and prevent productivity losses. Keywords: Glycine max. Remote Sensing. Precision Agriculture.No contexto atual da agricultura, a eficácia produtiva é fundamental para os agricultores, mas doenças, como a mancha alvo, continuam a prejudicar a produtividade da soja. O sensoriamento remoto, especialmente o sensoriamento hiperspectral, pode detectar essas doenças, mas tem desvantagens, como custo e complexidade. Os objetivos deste trabalho foram: identificar a variável de entrada (Bandas, Índices de vegetação e Reflectância) mais apropriado para as métricas trabalhadas (Classificação correta, Kappa e F-score) e identificar se há relação entre as bandas espectrais e índices de vegetação com os níveis de severidade da mancha alvo, produtividade e massa de grãos. O experimento foi realizado na safra 2022/23 em uma fazenda em Costa Rica/MS/BR, conduzido com diferentes tratamentos fungicidas, para se obter diferentes níveis de severidade da doença. Foram usados espectrorradiômetro e imagem de aeronave remotamente pilotada para coletar dados espectrais das folhas. Os dados foram submetidos a análises de aprendizado de máquina usando diferentes algoritmos. Os algoritmos RF (Floresta aleatória) e SVM (Máquina de vetor suporte) apresentaram melhor desempenho na classificação dos níveis de severidade da mancha alvo, utilizando reflectância. A análise multivariada mostrou que folhas saudáveis se destacam em comprimentos de onda específicos, enquanto as folhas doentes mostraram diferentes padrões espectrais. A detecção de doenças usando sensores hiperespectrais permitiu uma aquisição detalhada de informações. O estudo demonstrou que o sensoriamento remoto, especialmente sensores hiperespectrais e técnicas de aprendizado de máquina podem ser eficaz na detecção precoce e no monitoramento da mancha alvo em lavouras de soja, permitindo uma ação rápida para o controle e prevenção de perdas de produtividade. Palavras-chave: Glycine max. Sensoriamento remoto. Agricultura de Precisão.Fundação Universidade Federal de Mato Grosso do SulUFMSBrasilResposta hiperespectralSojamancha alvoCorynespora cassiicola.Resposta hiperespectral da cultura da soja em função da severidade da mancha alvo (Corynespora cassiicola)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisFabio Henrique Rojo BaioJOSE DONIZETE DE QUEIROZ OTONEinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSORIGINALDissertação_José Donizete de Queiroz Otone.pdfDissertação_José Donizete de Queiroz Otone.pdfapplication/pdf1258848https://repositorio.ufms.br/bitstream/123456789/8403/-1/Disserta%c3%a7%c3%a3o_Jos%c3%a9%20Donizete%20de%20Queiroz%20Otone.pdf40b87706e12faa48fc6f7f33c24bd7cfMD5-1123456789/84032024-02-15 13:02:07.609oai:repositorio.ufms.br:123456789/8403Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242024-02-15T17:02:07Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false |
dc.title.pt_BR.fl_str_mv |
Resposta hiperespectral da cultura da soja em função da severidade da mancha alvo (Corynespora cassiicola) |
title |
Resposta hiperespectral da cultura da soja em função da severidade da mancha alvo (Corynespora cassiicola) |
spellingShingle |
Resposta hiperespectral da cultura da soja em função da severidade da mancha alvo (Corynespora cassiicola) JOSE DONIZETE DE QUEIROZ OTONE Resposta hiperespectral Soja mancha alvo Corynespora cassiicola. |
title_short |
Resposta hiperespectral da cultura da soja em função da severidade da mancha alvo (Corynespora cassiicola) |
title_full |
Resposta hiperespectral da cultura da soja em função da severidade da mancha alvo (Corynespora cassiicola) |
title_fullStr |
Resposta hiperespectral da cultura da soja em função da severidade da mancha alvo (Corynespora cassiicola) |
title_full_unstemmed |
Resposta hiperespectral da cultura da soja em função da severidade da mancha alvo (Corynespora cassiicola) |
title_sort |
Resposta hiperespectral da cultura da soja em função da severidade da mancha alvo (Corynespora cassiicola) |
author |
JOSE DONIZETE DE QUEIROZ OTONE |
author_facet |
JOSE DONIZETE DE QUEIROZ OTONE |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Fabio Henrique Rojo Baio |
dc.contributor.author.fl_str_mv |
JOSE DONIZETE DE QUEIROZ OTONE |
contributor_str_mv |
Fabio Henrique Rojo Baio |
dc.subject.por.fl_str_mv |
Resposta hiperespectral Soja mancha alvo Corynespora cassiicola. |
topic |
Resposta hiperespectral Soja mancha alvo Corynespora cassiicola. |
description |
In the current context of agriculture, productive efficiency is fundamental for farmers, but diseases, such as target spot, continue to harm soybean productivity. Remote sensing, especially hyperspectral sensing, can detect these diseases, but it has disadvantages such as cost and complexity. The objectives of this work were: to identify the input variable (Bands, Vegetation Indices and Reflectance) most appropriate for the metrics worked on (Correct Classification, Kappa and F-score) and to identify whether there is a relationship between the spectral bands and vegetation indices with target stain severity levels, yield and vigrain mass. The experiment was carried out in the 2022/23 harvest on a farm in Costa Rica/MS/BR, conducted with different fungicide treatments, to obtain different levels of disease severity. A spectroradiometer and remotely piloted aircraft imaging were used to collect spectral data from the leaves. The data was subjected to machine learning analysis using different algorithms. The RF (Random Forest) and SVM (Support Vector Machine) algorithms showed better performance in classifying the severity levels of the target spot, using reflectance. Multivariate analysis showed that healthy leaves stood out at specific wavelengths, while diseased leaves showed different spectral patterns. Disease detection using hyperspectral sensors has enabled detailed information acquisition. The study demonstrated that remote sensing, especially hyperspectral sensors and machine learning techniques can be effective in early detection and monitoring of target spot in soybean crops, allowing rapid action to control and prevent productivity losses. Keywords: Glycine max. Remote Sensing. Precision Agriculture. |
publishDate |
2023 |
dc.date.issued.fl_str_mv |
2023 |
dc.date.accessioned.fl_str_mv |
2024-02-15T17:02:06Z |
dc.date.available.fl_str_mv |
2024-02-15T17:02:06Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufms.br/handle/123456789/8403 |
url |
https://repositorio.ufms.br/handle/123456789/8403 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
dc.publisher.initials.fl_str_mv |
UFMS |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMS instname:Universidade Federal de Mato Grosso do Sul (UFMS) instacron:UFMS |
instname_str |
Universidade Federal de Mato Grosso do Sul (UFMS) |
instacron_str |
UFMS |
institution |
UFMS |
reponame_str |
Repositório Institucional da UFMS |
collection |
Repositório Institucional da UFMS |
bitstream.url.fl_str_mv |
https://repositorio.ufms.br/bitstream/123456789/8403/-1/Disserta%c3%a7%c3%a3o_Jos%c3%a9%20Donizete%20de%20Queiroz%20Otone.pdf |
bitstream.checksum.fl_str_mv |
40b87706e12faa48fc6f7f33c24bd7cf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS) |
repository.mail.fl_str_mv |
ri.prograd@ufms.br |
_version_ |
1815448044651413504 |