Estatística Multivariada Aplicada: Construção do Modelo de Previsão de Insolvência Aranha & Gondrige
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFMS |
Texto Completo: | https://repositorio.ufms.br/handle/123456789/4041 |
Resumo: | The insolvency forecast, although it is a widely discussed subject, still presents a need to improve the existing models, due to the emergence of new predictor variables, such as several currency substitutions, economic scenarios, adaptations of accounting standards with the international standard, among others factors that affect the economy and performance of companies. The measurement of insolvency is conjectured as one of the countless difficulties to which organizations are susceptible, in which the analysis of financial statements helps to obtain information about the economic and financial performance of companies. Thus, one asks how to build an insolvency prediction model with the application of the discriminant function? The aim of this work was to empirically develop an insolvency prediction model using discriminant analysis. The work is justified by the need to seek to understand the financial situation of companies and the transition that occurs between solvent and insolvent companies so that it can serve as guidance in financial forecasts. For the development of the model, two samples with 30 companies were used, each consisting of insolvent companies because they are in judicial recovery, which have recurring losses or with Liabilities Uncovered to another sample composed of solvent companies. For the purpose of homogeneity between sample groups, companies from the same segment as well as similar asset volumes were taken into account. Economic and financial indicators were collected from the Economática® database for the year 2019. For modeling the discriminant function, the IBM SPSS Estatistics Software was used, as well as a Microsoft Excel® spreadsheet. The research, in terms of its nature, characterizes up as applied; as for the approach, it is quantitative; with regard to the objectives, it is classified as descriptive and uses bibliographic research and data collection methods. Statistically, the developed model has a discriminatory power of 90% and, when submitted to the validation test, using a sample of companies different from those used initially, it presented a 95% accuracy rate. In the comparative test with other existing models, the result was 93.33%, therefore, the Aranha & Gondrge Insolvency Prediction Model obtained an excellent representation, being considered a robust model. |
id |
UFMS_b2bf0455ea1ce9f57513ccca09779a30 |
---|---|
oai_identifier_str |
oai:repositorio.ufms.br:123456789/4041 |
network_acronym_str |
UFMS |
network_name_str |
Repositório Institucional da UFMS |
repository_id_str |
2124 |
spelling |
2021-10-07T20:25:23Z2021-10-07T20:25:23Z2021https://repositorio.ufms.br/handle/123456789/4041The insolvency forecast, although it is a widely discussed subject, still presents a need to improve the existing models, due to the emergence of new predictor variables, such as several currency substitutions, economic scenarios, adaptations of accounting standards with the international standard, among others factors that affect the economy and performance of companies. The measurement of insolvency is conjectured as one of the countless difficulties to which organizations are susceptible, in which the analysis of financial statements helps to obtain information about the economic and financial performance of companies. Thus, one asks how to build an insolvency prediction model with the application of the discriminant function? The aim of this work was to empirically develop an insolvency prediction model using discriminant analysis. The work is justified by the need to seek to understand the financial situation of companies and the transition that occurs between solvent and insolvent companies so that it can serve as guidance in financial forecasts. For the development of the model, two samples with 30 companies were used, each consisting of insolvent companies because they are in judicial recovery, which have recurring losses or with Liabilities Uncovered to another sample composed of solvent companies. For the purpose of homogeneity between sample groups, companies from the same segment as well as similar asset volumes were taken into account. Economic and financial indicators were collected from the Economática® database for the year 2019. For modeling the discriminant function, the IBM SPSS Estatistics Software was used, as well as a Microsoft Excel® spreadsheet. The research, in terms of its nature, characterizes up as applied; as for the approach, it is quantitative; with regard to the objectives, it is classified as descriptive and uses bibliographic research and data collection methods. Statistically, the developed model has a discriminatory power of 90% and, when submitted to the validation test, using a sample of companies different from those used initially, it presented a 95% accuracy rate. In the comparative test with other existing models, the result was 93.33%, therefore, the Aranha & Gondrge Insolvency Prediction Model obtained an excellent representation, being considered a robust model.A previsão de insolvência, embora seja assunto bastante discutido, ainda apresenta uma necessidade de aprimoramento dos modelos existentes, devido ao surgimento de novas variáveis preditoras, como várias substituições de moedas, cenários econômicos, adequações das normas de contabilidade com o padrão internacional, dentre outros fatores que afetam a economia e o desempenho das companhias. A mensuração da insolvência conjectura-se como uma das inúmeras dificuldades às quais as organizações estão suscetíveis, em que a análise das demonstrações contábeis auxilia na obtenção das informações sobre o desempenho econômico-financeiro das companhias. Dessa forma, indaga-se como construir um modelo de previsão de insolvência com a aplicação da função discriminante? O objetivo deste trabalho visou desenvolver empiricamente um modelo de previsão de insolvência utilizando a análise discriminante. O trabalho se justifica pela necessidade de buscar compreender a situação financeira das companhias e a transição que ocorre entre as empresas solventes e insolventes para que possa servir de orientação em previsões financeiras. Para o desenvolvimento do modelo, foram utilizadas duas amostras com 30 companhias sendo cada uma constituída por empresas insolventes por se encontrarem em recuperação judicial, que apresentam prejuízos recorrentes ou com Passivo a Descoberto a outra amostra composta por empresas solventes. Foram levados em consideração, para efeito de homogeneidade entre os grupos de amostras, companhias de um mesmo segmento bem como volumes de ativo similares. Foram coletados indicadores econômico-financeiros junto à base de dados da Economática® relativos ao ano de 2019. Para modelagem da função discriminante, foi utilizado o Software IBM SPSS Estatistics bem como planilha Microsoft Excel®.. A pesquisa, quanto à sua natureza, caracteriza-se como aplicada; quanto à abordagem, é quantitativa; com relação aos objetivos, classifica-se como descritiva e utiliza-se dos métodos de pesquisa bibliográfica e coleta de dados. Estatisticamente o modelo desenvolvido apresenta um poder discriminatório de 90% e, quando submetido ao teste de validação, utilizando amostra de empresas diferentes das utilizadas inicialmente, apresentou índice de acerto de 95%. No teste comparativo com outros modelos existentes, o resultado foi de 93,33%, portanto, o Modelo de previsão de Insolvência Aranha & Gondrige obteve uma representatividade excelente, sendo considerado um modelo robusto.Fundação Universidade Federal de Mato Grosso do SulUFMSBrasilAnálise Econômico-FinanceiraFunção DiscriminanteFalênciaFinancial AnalysisDiscriminant FunctionBankruptcyEstatística Multivariada Aplicada: Construção do Modelo de Previsão de Insolvência Aranha & Gondrigeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisAranha, Jose Aparecido MouraGondrige, Eloir de Oliveirainfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSTHUMBNAILDissertação Analise Discriminante_VPC.pdf.jpgDissertação Analise Discriminante_VPC.pdf.jpgGenerated Thumbnailimage/jpeg1370https://repositorio.ufms.br/bitstream/123456789/4041/3/Disserta%c3%a7%c3%a3o%20Analise%20Discriminante_VPC.pdf.jpge34372d9d437fcd2a9d8fd1d9cfd25d8MD53TEXTDissertação Analise Discriminante_VPC.pdf.txtDissertação Analise Discriminante_VPC.pdf.txtExtracted texttext/plain158010https://repositorio.ufms.br/bitstream/123456789/4041/2/Disserta%c3%a7%c3%a3o%20Analise%20Discriminante_VPC.pdf.txteb28a48ef93afccfde52cf03f7d0933eMD52ORIGINALDissertação Analise Discriminante_VPC.pdfDissertação Analise Discriminante_VPC.pdfapplication/pdf1375771https://repositorio.ufms.br/bitstream/123456789/4041/1/Disserta%c3%a7%c3%a3o%20Analise%20Discriminante_VPC.pdfa2fa21efe3b1ab895a0a420a399da6e1MD51123456789/40412023-01-25 08:45:07.747oai:repositorio.ufms.br:123456789/4041Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242023-01-25T12:45:07Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false |
dc.title.pt_BR.fl_str_mv |
Estatística Multivariada Aplicada: Construção do Modelo de Previsão de Insolvência Aranha & Gondrige |
title |
Estatística Multivariada Aplicada: Construção do Modelo de Previsão de Insolvência Aranha & Gondrige |
spellingShingle |
Estatística Multivariada Aplicada: Construção do Modelo de Previsão de Insolvência Aranha & Gondrige Gondrige, Eloir de Oliveira Análise Econômico-Financeira Função Discriminante Falência Financial Analysis Discriminant Function Bankruptcy |
title_short |
Estatística Multivariada Aplicada: Construção do Modelo de Previsão de Insolvência Aranha & Gondrige |
title_full |
Estatística Multivariada Aplicada: Construção do Modelo de Previsão de Insolvência Aranha & Gondrige |
title_fullStr |
Estatística Multivariada Aplicada: Construção do Modelo de Previsão de Insolvência Aranha & Gondrige |
title_full_unstemmed |
Estatística Multivariada Aplicada: Construção do Modelo de Previsão de Insolvência Aranha & Gondrige |
title_sort |
Estatística Multivariada Aplicada: Construção do Modelo de Previsão de Insolvência Aranha & Gondrige |
author |
Gondrige, Eloir de Oliveira |
author_facet |
Gondrige, Eloir de Oliveira |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Aranha, Jose Aparecido Moura |
dc.contributor.author.fl_str_mv |
Gondrige, Eloir de Oliveira |
contributor_str_mv |
Aranha, Jose Aparecido Moura |
dc.subject.por.fl_str_mv |
Análise Econômico-Financeira Função Discriminante Falência Financial Analysis Discriminant Function Bankruptcy |
topic |
Análise Econômico-Financeira Função Discriminante Falência Financial Analysis Discriminant Function Bankruptcy |
description |
The insolvency forecast, although it is a widely discussed subject, still presents a need to improve the existing models, due to the emergence of new predictor variables, such as several currency substitutions, economic scenarios, adaptations of accounting standards with the international standard, among others factors that affect the economy and performance of companies. The measurement of insolvency is conjectured as one of the countless difficulties to which organizations are susceptible, in which the analysis of financial statements helps to obtain information about the economic and financial performance of companies. Thus, one asks how to build an insolvency prediction model with the application of the discriminant function? The aim of this work was to empirically develop an insolvency prediction model using discriminant analysis. The work is justified by the need to seek to understand the financial situation of companies and the transition that occurs between solvent and insolvent companies so that it can serve as guidance in financial forecasts. For the development of the model, two samples with 30 companies were used, each consisting of insolvent companies because they are in judicial recovery, which have recurring losses or with Liabilities Uncovered to another sample composed of solvent companies. For the purpose of homogeneity between sample groups, companies from the same segment as well as similar asset volumes were taken into account. Economic and financial indicators were collected from the Economática® database for the year 2019. For modeling the discriminant function, the IBM SPSS Estatistics Software was used, as well as a Microsoft Excel® spreadsheet. The research, in terms of its nature, characterizes up as applied; as for the approach, it is quantitative; with regard to the objectives, it is classified as descriptive and uses bibliographic research and data collection methods. Statistically, the developed model has a discriminatory power of 90% and, when submitted to the validation test, using a sample of companies different from those used initially, it presented a 95% accuracy rate. In the comparative test with other existing models, the result was 93.33%, therefore, the Aranha & Gondrge Insolvency Prediction Model obtained an excellent representation, being considered a robust model. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-10-07T20:25:23Z |
dc.date.available.fl_str_mv |
2021-10-07T20:25:23Z |
dc.date.issued.fl_str_mv |
2021 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufms.br/handle/123456789/4041 |
url |
https://repositorio.ufms.br/handle/123456789/4041 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
dc.publisher.initials.fl_str_mv |
UFMS |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMS instname:Universidade Federal de Mato Grosso do Sul (UFMS) instacron:UFMS |
instname_str |
Universidade Federal de Mato Grosso do Sul (UFMS) |
instacron_str |
UFMS |
institution |
UFMS |
reponame_str |
Repositório Institucional da UFMS |
collection |
Repositório Institucional da UFMS |
bitstream.url.fl_str_mv |
https://repositorio.ufms.br/bitstream/123456789/4041/3/Disserta%c3%a7%c3%a3o%20Analise%20Discriminante_VPC.pdf.jpg https://repositorio.ufms.br/bitstream/123456789/4041/2/Disserta%c3%a7%c3%a3o%20Analise%20Discriminante_VPC.pdf.txt https://repositorio.ufms.br/bitstream/123456789/4041/1/Disserta%c3%a7%c3%a3o%20Analise%20Discriminante_VPC.pdf |
bitstream.checksum.fl_str_mv |
e34372d9d437fcd2a9d8fd1d9cfd25d8 eb28a48ef93afccfde52cf03f7d0933e a2fa21efe3b1ab895a0a420a399da6e1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS) |
repository.mail.fl_str_mv |
ri.prograd@ufms.br |
_version_ |
1815447985592467456 |