Modelagem bioeconômica para populações bovinas da raça Nelore em diferentes sistemas de produção

Detalhes bibliográficos
Autor(a) principal: Renata Felisberto Henriques
Data de Publicação: 2024
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFMS
Texto Completo: https://repositorio.ufms.br/handle/123456789/8805
Resumo: The economic importance of beef cattle farming in the Brazilian Cerrado biome is well known, however, by optimizing processes it is possible to overcome the sector's expectations. By considering performance and financial factors through simulated computer models, it is possible to establish bioeconomic evaluations, which take productivity and economic viability into account in beef cattle production. Aiming to develop a bioeconomic model, a simulation model was developed for the first time to generate information on Nelore herds in different production systems under the Cerrado biome environmental conditions. Data gathered from the literature was used to design six simulated models, representing different production systems: modal (extensive) system, improved breeding system 1, improved breeding system 2, improved breeding system 3, improved breeding system 4 and improved breeding system 5. Stochastic simulation was carried out using the Leslie matrix to describe age-structured model with age specific probability of producing calf survival and survival rates. The main target variables in the herd simulation models were quantitative, including number of animals and weight variables associated with heifer, steer and mature cows categories. In order to use the modeling economic data, a second algorithm was developed from the herd data, simulating values for income, costs and profit for all six simulated production systems. System income was simulated according to the average of arroba prices between 2021 and 2023, based on the CEPEA/B3 cattle indicator, as well as the variance related to carcass yield and fat was taken into account. Parameters related to production costs were derived from ABIEC's Beef Report 2023. The resulting gross profit for each system was derived by taking the difference between income and costs. Correlation and regression analyses were carried out to verify and evaluate the fit quality of the simulated variables. Significance was declared at p≤0.05. The modeling and statistical analyses performed were carried out by using programmed commands in the R environment. The results show a strong and positive correlation (from 0.93 to 0.99) (p < 0.05) between the observed and simulated data showing the current bioeconomic simulation model's ability to replicate all the systems studied. Regression analysis was applied to compare the observed and simulated data, showing significant linear regression for all the variables considered (p<0.05). The significance of the regression, as well as the high coefficient of determination, suggests that the bioeconomic simulation models can adequately predict the variables. The evaluated models proved to be able to predict herds and economic data, from extensive to more intensive beef cattle production in full-cycle systems. The developed solution can be applied in different contexts, providing complete evaluations to provide support for both farmers and researchers in the management of animal and economic resources in the cattle production.
id UFMS_c181bc1133fa97c4ee55e93d25c9c07d
oai_identifier_str oai:repositorio.ufms.br:123456789/8805
network_acronym_str UFMS
network_name_str Repositório Institucional da UFMS
repository_id_str 2124
spelling 2024-06-10T20:41:37Z2024-06-10T20:41:37Z2024https://repositorio.ufms.br/handle/123456789/8805The economic importance of beef cattle farming in the Brazilian Cerrado biome is well known, however, by optimizing processes it is possible to overcome the sector's expectations. By considering performance and financial factors through simulated computer models, it is possible to establish bioeconomic evaluations, which take productivity and economic viability into account in beef cattle production. Aiming to develop a bioeconomic model, a simulation model was developed for the first time to generate information on Nelore herds in different production systems under the Cerrado biome environmental conditions. Data gathered from the literature was used to design six simulated models, representing different production systems: modal (extensive) system, improved breeding system 1, improved breeding system 2, improved breeding system 3, improved breeding system 4 and improved breeding system 5. Stochastic simulation was carried out using the Leslie matrix to describe age-structured model with age specific probability of producing calf survival and survival rates. The main target variables in the herd simulation models were quantitative, including number of animals and weight variables associated with heifer, steer and mature cows categories. In order to use the modeling economic data, a second algorithm was developed from the herd data, simulating values for income, costs and profit for all six simulated production systems. System income was simulated according to the average of arroba prices between 2021 and 2023, based on the CEPEA/B3 cattle indicator, as well as the variance related to carcass yield and fat was taken into account. Parameters related to production costs were derived from ABIEC's Beef Report 2023. The resulting gross profit for each system was derived by taking the difference between income and costs. Correlation and regression analyses were carried out to verify and evaluate the fit quality of the simulated variables. Significance was declared at p≤0.05. The modeling and statistical analyses performed were carried out by using programmed commands in the R environment. The results show a strong and positive correlation (from 0.93 to 0.99) (p < 0.05) between the observed and simulated data showing the current bioeconomic simulation model's ability to replicate all the systems studied. Regression analysis was applied to compare the observed and simulated data, showing significant linear regression for all the variables considered (p<0.05). The significance of the regression, as well as the high coefficient of determination, suggests that the bioeconomic simulation models can adequately predict the variables. The evaluated models proved to be able to predict herds and economic data, from extensive to more intensive beef cattle production in full-cycle systems. The developed solution can be applied in different contexts, providing complete evaluations to provide support for both farmers and researchers in the management of animal and economic resources in the cattle production.É reconhecida a importância econômica da pecuária de corte no bioma Cerrado brasileiro, entretanto com a otimização dos processos é possível superar as expectativas do setor. Ao considerar os fatores de desempenho e financeiros por meio de modelos computacionais simulados é possível traçar avaliações bioeconômicas que contemplem a produtividade e a viabilidade econômica na bovinocultura de corte. Visando desenvolver uma modelagem bioeconômica, primeiramente foi desenvolvido um modelo de simulação para gerar informações de rebanho Nelore em diferentes sistemas de produção nas condições ambientais do bioma Cerrado. Dados extraídos da literatura foram empregados na concepção de seis modelos simulados, os quais representam distintos sistemas de produção: sistema modal (extensivo), sistema de produção melhorado 1, sistema de produção melhorado 2, sistema de produção melhorado 3, sistema de produção melhorado 4 e sistema de produção melhorado 5. A simulação foi realizada de forma estocástica por meio da utilização da matriz de Leslie, caracterizando os modelos estruturados por idade, incorporando probabilidades específicas por faixa etária, taxas de sobrevivência das matrizes, bem como a taxa de sobrevivência para bezerras. As principais variáveis abordadas nos modelos de simulação de rebanho incluíram informações quantitativas, tais como o número de animais no rebanho e variáveis de peso relacionadas às categorias de novilhas e novilhos de corte, e vacas à maturidade. Para a inclusão de dados econômicos à modelagem, foi criado um segundo algoritmo, em continuidade aos dados de rebanho, que simularam os valores para receita, custos e lucro nos seis sistemas de produção simulados. A receita por sistema foi simulada com base na média da arroba entre 2021 e 2023, segundo o indicador do boi gordo do CEPEA/B3 e considerou a variância correspondente a rendimento de carcaça e gordura. Os parâmetros relacionados aos custos de produção foram derivados dos custos de produção do Beef Report 2023 da ABIEC. O lucro bruto resultante de cada sistema foi obtido pela diferença entre receita e custo. Para verificar e avaliar a qualidade do ajuste das variáveis simuladas foram conduzidas análises de correlação e regressão, considerando um nível de significância de 5%. Toda a modelagem e análises estatísticas desenvolvidas foram geradas usando comandos programados no ambiente R. Os resultados destacam uma robusta e positiva correlação (variando de 0,93 a 0,99) (p < 0,05) entre os dados observados e os simulados, evidenciando a capacidade do atual modelo de simulação bioeconômica em replicar todos os sistemas analisados. A análise de regressão foi empregada para contrastar os dados observados e simulados, revelando uma regressão linear significativa para todas as variáveis examinadas (p<0,05). Essa significância, aliada a um elevado coeficiente de determinação, sugere que tais variáveis podem ser adequadamente previstas pelos modelos de simulação bioeconômica. Os modelos avaliados demonstraram capacidade em prever rebanhos e dados econômicos, desde a produção extensiva até a mais intensiva de gado de corte em sistemas de ciclo completo. A ferramenta desenvolvida permite sua aplicação em diferentes contextos, viabilizando avaliações abrangentes para orientar investidores e produtores na gestão eficiente dos recursos animais e econômicos na atividade pecuária.Fundação Universidade Federal de Mato Grosso do SulUFMSBrasilModelagem bioeconômicaraça Neloresistemas de produção.Modelagem bioeconômica para populações bovinas da raça Nelore em diferentes sistemas de produçãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisRicardo Carneiro BrumattiRenata Felisberto Henriquesinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSORIGINALTESE_Renata.pdfTESE_Renata.pdfapplication/pdf1688772https://repositorio.ufms.br/bitstream/123456789/8805/-1/TESE_Renata.pdfe650df30e5bf06567e67887b0485c7f2MD5-1123456789/88052024-06-10 16:41:38.034oai:repositorio.ufms.br:123456789/8805Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242024-06-10T20:41:38Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false
dc.title.pt_BR.fl_str_mv Modelagem bioeconômica para populações bovinas da raça Nelore em diferentes sistemas de produção
title Modelagem bioeconômica para populações bovinas da raça Nelore em diferentes sistemas de produção
spellingShingle Modelagem bioeconômica para populações bovinas da raça Nelore em diferentes sistemas de produção
Renata Felisberto Henriques
Modelagem bioeconômica
raça Nelore
sistemas de produção.
title_short Modelagem bioeconômica para populações bovinas da raça Nelore em diferentes sistemas de produção
title_full Modelagem bioeconômica para populações bovinas da raça Nelore em diferentes sistemas de produção
title_fullStr Modelagem bioeconômica para populações bovinas da raça Nelore em diferentes sistemas de produção
title_full_unstemmed Modelagem bioeconômica para populações bovinas da raça Nelore em diferentes sistemas de produção
title_sort Modelagem bioeconômica para populações bovinas da raça Nelore em diferentes sistemas de produção
author Renata Felisberto Henriques
author_facet Renata Felisberto Henriques
author_role author
dc.contributor.advisor1.fl_str_mv Ricardo Carneiro Brumatti
dc.contributor.author.fl_str_mv Renata Felisberto Henriques
contributor_str_mv Ricardo Carneiro Brumatti
dc.subject.por.fl_str_mv Modelagem bioeconômica
raça Nelore
sistemas de produção.
topic Modelagem bioeconômica
raça Nelore
sistemas de produção.
description The economic importance of beef cattle farming in the Brazilian Cerrado biome is well known, however, by optimizing processes it is possible to overcome the sector's expectations. By considering performance and financial factors through simulated computer models, it is possible to establish bioeconomic evaluations, which take productivity and economic viability into account in beef cattle production. Aiming to develop a bioeconomic model, a simulation model was developed for the first time to generate information on Nelore herds in different production systems under the Cerrado biome environmental conditions. Data gathered from the literature was used to design six simulated models, representing different production systems: modal (extensive) system, improved breeding system 1, improved breeding system 2, improved breeding system 3, improved breeding system 4 and improved breeding system 5. Stochastic simulation was carried out using the Leslie matrix to describe age-structured model with age specific probability of producing calf survival and survival rates. The main target variables in the herd simulation models were quantitative, including number of animals and weight variables associated with heifer, steer and mature cows categories. In order to use the modeling economic data, a second algorithm was developed from the herd data, simulating values for income, costs and profit for all six simulated production systems. System income was simulated according to the average of arroba prices between 2021 and 2023, based on the CEPEA/B3 cattle indicator, as well as the variance related to carcass yield and fat was taken into account. Parameters related to production costs were derived from ABIEC's Beef Report 2023. The resulting gross profit for each system was derived by taking the difference between income and costs. Correlation and regression analyses were carried out to verify and evaluate the fit quality of the simulated variables. Significance was declared at p≤0.05. The modeling and statistical analyses performed were carried out by using programmed commands in the R environment. The results show a strong and positive correlation (from 0.93 to 0.99) (p < 0.05) between the observed and simulated data showing the current bioeconomic simulation model's ability to replicate all the systems studied. Regression analysis was applied to compare the observed and simulated data, showing significant linear regression for all the variables considered (p<0.05). The significance of the regression, as well as the high coefficient of determination, suggests that the bioeconomic simulation models can adequately predict the variables. The evaluated models proved to be able to predict herds and economic data, from extensive to more intensive beef cattle production in full-cycle systems. The developed solution can be applied in different contexts, providing complete evaluations to provide support for both farmers and researchers in the management of animal and economic resources in the cattle production.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-06-10T20:41:37Z
dc.date.available.fl_str_mv 2024-06-10T20:41:37Z
dc.date.issued.fl_str_mv 2024
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufms.br/handle/123456789/8805
url https://repositorio.ufms.br/handle/123456789/8805
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Fundação Universidade Federal de Mato Grosso do Sul
dc.publisher.initials.fl_str_mv UFMS
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Fundação Universidade Federal de Mato Grosso do Sul
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMS
instname:Universidade Federal de Mato Grosso do Sul (UFMS)
instacron:UFMS
instname_str Universidade Federal de Mato Grosso do Sul (UFMS)
instacron_str UFMS
institution UFMS
reponame_str Repositório Institucional da UFMS
collection Repositório Institucional da UFMS
bitstream.url.fl_str_mv https://repositorio.ufms.br/bitstream/123456789/8805/-1/TESE_Renata.pdf
bitstream.checksum.fl_str_mv e650df30e5bf06567e67887b0485c7f2
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)
repository.mail.fl_str_mv ri.prograd@ufms.br
_version_ 1815448062909218816