Detecção e rastreamento de múltiplos objetos utilizando redes profundas no contexto de mapeamento de formigueiros em plantação de Eucaliptos

Detalhes bibliográficos
Autor(a) principal: GIAN LUCAS DA SILVA RAMALHO
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFMS
Texto Completo: https://repositorio.ufms.br/handle/123456789/5146
Resumo: The forestry sector enables economic and environmental development, offering employment and income to the population and helping to reduce climate change. According to IBGE, in 2019, the area of forests cultivated throughout the national territory reached a total of 9.98 million hectares. Eucalyptus cultivation represents approximately 76%, equivalent to 7.61 million hectares. In the forest plantations present in Brazil, one of the main pests that intensely affect production, are leaf-cutting ants. These insects consume a lot of vegetation, attacking different plant species and causing defoliation to death. of the plant, regardless of its size, from seedlings to trees. To fight ants, chemical products are used, along with plantation monitoring. You can apply detection and tracking of objects in images of the plantations, to assist in the monitoring of the plantation and the anthills. The detection and tracking of objects in this study fit the context of tracking multiple objects, Multiple Object Tracking (MOT). The MOT task refers to locating multiple objects, identifying them, and calculating their trajectories. individual images in a sequence of images. In this study, three object detectors, Faster R-CNN, RetinaNet, and VFNet, along with the Tracktor tracking methods, Byte Tracker Deep Sort in addition to the proposal of a method based on the SORT Method, for tracking anthills. Evaluations of object detection and tracking methods were carried out, and the best tracking results obtained were using the RetinaNet detector which achieved 0.817 of Average Precision (AP), 53,004 of Higher Order Tracking Accuracy (HOTA) with method Byte Tracker, 47,120 HOTA with the Proposed Method and 43,426 HOTA with the Deep Sort. Although the Byte Tracker indicates a superior HOTA result, the Method Proposed excels in counting objects, out performing other methods tracking.
id UFMS_c2b4558ca6aff803aad9bc23b724913c
oai_identifier_str oai:repositorio.ufms.br:123456789/5146
network_acronym_str UFMS
network_name_str Repositório Institucional da UFMS
repository_id_str 2124
spelling 2022-10-04T01:28:51Z2022-10-04T01:28:51Z2022https://repositorio.ufms.br/handle/123456789/5146The forestry sector enables economic and environmental development, offering employment and income to the population and helping to reduce climate change. According to IBGE, in 2019, the area of forests cultivated throughout the national territory reached a total of 9.98 million hectares. Eucalyptus cultivation represents approximately 76%, equivalent to 7.61 million hectares. In the forest plantations present in Brazil, one of the main pests that intensely affect production, are leaf-cutting ants. These insects consume a lot of vegetation, attacking different plant species and causing defoliation to death. of the plant, regardless of its size, from seedlings to trees. To fight ants, chemical products are used, along with plantation monitoring. You can apply detection and tracking of objects in images of the plantations, to assist in the monitoring of the plantation and the anthills. The detection and tracking of objects in this study fit the context of tracking multiple objects, Multiple Object Tracking (MOT). The MOT task refers to locating multiple objects, identifying them, and calculating their trajectories. individual images in a sequence of images. In this study, three object detectors, Faster R-CNN, RetinaNet, and VFNet, along with the Tracktor tracking methods, Byte Tracker Deep Sort in addition to the proposal of a method based on the SORT Method, for tracking anthills. Evaluations of object detection and tracking methods were carried out, and the best tracking results obtained were using the RetinaNet detector which achieved 0.817 of Average Precision (AP), 53,004 of Higher Order Tracking Accuracy (HOTA) with method Byte Tracker, 47,120 HOTA with the Proposed Method and 43,426 HOTA with the Deep Sort. Although the Byte Tracker indicates a superior HOTA result, the Method Proposed excels in counting objects, out performing other methods tracking.O setor da silvicultura possibilita o desenvolvimento econômico e ambiental, oferecendo emprego e renda para a população e auxiliando com a redução das mudanças climáticas. Segundo IBGE, no ano de 2020, a área de florestas cultivadas em todo o território nacional alcançara um total de 9,98 milhões de hectares. O cultivo de eucalipto representa aproximadamente 76%, equivalente a 7,61 milhões de hectares. Nas plantações florestais presentes no Brasil, uma das principais pragas e que afetam intensamente a produção, são as formigas cortadeiras. Esses insetos consomem muita vegetação, atacando diferentes as espécies de plantas e causando a desfolha até a morte da planta, independendo do tamanho dela, de mudas até árvores. Para combater às formigas, são utilizados produtos químicos, juntamente com o monitoramento da plantação. É possível aplicar a detecção e o rastreamento de objetos em imagens das plantações, com o intuito de auxiliar no monitoramento da plantação e dos formigueiros. A detecção e o rastreamento dos objetos nesse estudo se encaixam no contexto do rastreamento de múltiplos objetos, Multiple Object Tracking (MOT). A tarefa do MOT refere-se na localização de múltiplos objetos, na sua identificação e no cálculo de suas trajetórias individuais, em uma sequência de imagens. Neste estudo foram avaliados três detectores de objetos, Faster R-CNN , RetinaNet e VFNet, juntamente com os métodos de rastreamento Tracktor, Byte Tracker Deep Sort, além da proposta de um método baseado no Método SORT, para rastreamento de formigueiros. As avaliações dos métodos de detecção e rastreamento de objetos foram realizadas, e o melhores resultados de rastreamento obtidos foram utilizando o detector RetinaNet que atingiu 0.817 de Average Precision (AP), 53.004 de Higher Order Tracking Accuracy (HOTA) com o método de rastreamento Byte Tracker, 47.120 de HOTA com o Método Proposto e 43.426 de HOTA com o Deep Sort. Apesar do Byte Tracker indicar resultado HOTA superior, o Método Proposto se destaca na contagem dos objetos, superando os outros métodos de rastreamento.Fundação Universidade Federal de Mato Grosso do SulUFMSBrasilAgricultura de Precisão, detecção de objetos, Deep Learning, Rastreamento de ObjetosDetecção e rastreamento de múltiplos objetos utilizando redes profundas no contexto de mapeamento de formigueiros em plantação de Eucaliptosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisJonathan de Andrade SilvaGIAN LUCAS DA SILVA RAMALHOinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSORIGINALGian.pdfGian.pdfapplication/pdf4459758https://repositorio.ufms.br/bitstream/123456789/5146/-1/Gian.pdf2f69e178d45be2deeacc1c0d0bebfbd6MD5-1123456789/51462022-10-03 21:28:52.204oai:repositorio.ufms.br:123456789/5146Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242022-10-04T01:28:52Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false
dc.title.pt_BR.fl_str_mv Detecção e rastreamento de múltiplos objetos utilizando redes profundas no contexto de mapeamento de formigueiros em plantação de Eucaliptos
title Detecção e rastreamento de múltiplos objetos utilizando redes profundas no contexto de mapeamento de formigueiros em plantação de Eucaliptos
spellingShingle Detecção e rastreamento de múltiplos objetos utilizando redes profundas no contexto de mapeamento de formigueiros em plantação de Eucaliptos
GIAN LUCAS DA SILVA RAMALHO
Agricultura de Precisão, detecção de objetos, Deep Learning, Rastreamento de Objetos
title_short Detecção e rastreamento de múltiplos objetos utilizando redes profundas no contexto de mapeamento de formigueiros em plantação de Eucaliptos
title_full Detecção e rastreamento de múltiplos objetos utilizando redes profundas no contexto de mapeamento de formigueiros em plantação de Eucaliptos
title_fullStr Detecção e rastreamento de múltiplos objetos utilizando redes profundas no contexto de mapeamento de formigueiros em plantação de Eucaliptos
title_full_unstemmed Detecção e rastreamento de múltiplos objetos utilizando redes profundas no contexto de mapeamento de formigueiros em plantação de Eucaliptos
title_sort Detecção e rastreamento de múltiplos objetos utilizando redes profundas no contexto de mapeamento de formigueiros em plantação de Eucaliptos
author GIAN LUCAS DA SILVA RAMALHO
author_facet GIAN LUCAS DA SILVA RAMALHO
author_role author
dc.contributor.advisor1.fl_str_mv Jonathan de Andrade Silva
dc.contributor.author.fl_str_mv GIAN LUCAS DA SILVA RAMALHO
contributor_str_mv Jonathan de Andrade Silva
dc.subject.por.fl_str_mv Agricultura de Precisão, detecção de objetos, Deep Learning, Rastreamento de Objetos
topic Agricultura de Precisão, detecção de objetos, Deep Learning, Rastreamento de Objetos
description The forestry sector enables economic and environmental development, offering employment and income to the population and helping to reduce climate change. According to IBGE, in 2019, the area of forests cultivated throughout the national territory reached a total of 9.98 million hectares. Eucalyptus cultivation represents approximately 76%, equivalent to 7.61 million hectares. In the forest plantations present in Brazil, one of the main pests that intensely affect production, are leaf-cutting ants. These insects consume a lot of vegetation, attacking different plant species and causing defoliation to death. of the plant, regardless of its size, from seedlings to trees. To fight ants, chemical products are used, along with plantation monitoring. You can apply detection and tracking of objects in images of the plantations, to assist in the monitoring of the plantation and the anthills. The detection and tracking of objects in this study fit the context of tracking multiple objects, Multiple Object Tracking (MOT). The MOT task refers to locating multiple objects, identifying them, and calculating their trajectories. individual images in a sequence of images. In this study, three object detectors, Faster R-CNN, RetinaNet, and VFNet, along with the Tracktor tracking methods, Byte Tracker Deep Sort in addition to the proposal of a method based on the SORT Method, for tracking anthills. Evaluations of object detection and tracking methods were carried out, and the best tracking results obtained were using the RetinaNet detector which achieved 0.817 of Average Precision (AP), 53,004 of Higher Order Tracking Accuracy (HOTA) with method Byte Tracker, 47,120 HOTA with the Proposed Method and 43,426 HOTA with the Deep Sort. Although the Byte Tracker indicates a superior HOTA result, the Method Proposed excels in counting objects, out performing other methods tracking.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-10-04T01:28:51Z
dc.date.available.fl_str_mv 2022-10-04T01:28:51Z
dc.date.issued.fl_str_mv 2022
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufms.br/handle/123456789/5146
url https://repositorio.ufms.br/handle/123456789/5146
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Fundação Universidade Federal de Mato Grosso do Sul
dc.publisher.initials.fl_str_mv UFMS
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Fundação Universidade Federal de Mato Grosso do Sul
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMS
instname:Universidade Federal de Mato Grosso do Sul (UFMS)
instacron:UFMS
instname_str Universidade Federal de Mato Grosso do Sul (UFMS)
instacron_str UFMS
institution UFMS
reponame_str Repositório Institucional da UFMS
collection Repositório Institucional da UFMS
bitstream.url.fl_str_mv https://repositorio.ufms.br/bitstream/123456789/5146/-1/Gian.pdf
bitstream.checksum.fl_str_mv 2f69e178d45be2deeacc1c0d0bebfbd6
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)
repository.mail.fl_str_mv ri.prograd@ufms.br
_version_ 1815448008304623616