Detecção e rastreamento de múltiplos objetos utilizando redes profundas no contexto de mapeamento de formigueiros em plantação de Eucaliptos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFMS |
Texto Completo: | https://repositorio.ufms.br/handle/123456789/5146 |
Resumo: | The forestry sector enables economic and environmental development, offering employment and income to the population and helping to reduce climate change. According to IBGE, in 2019, the area of forests cultivated throughout the national territory reached a total of 9.98 million hectares. Eucalyptus cultivation represents approximately 76%, equivalent to 7.61 million hectares. In the forest plantations present in Brazil, one of the main pests that intensely affect production, are leaf-cutting ants. These insects consume a lot of vegetation, attacking different plant species and causing defoliation to death. of the plant, regardless of its size, from seedlings to trees. To fight ants, chemical products are used, along with plantation monitoring. You can apply detection and tracking of objects in images of the plantations, to assist in the monitoring of the plantation and the anthills. The detection and tracking of objects in this study fit the context of tracking multiple objects, Multiple Object Tracking (MOT). The MOT task refers to locating multiple objects, identifying them, and calculating their trajectories. individual images in a sequence of images. In this study, three object detectors, Faster R-CNN, RetinaNet, and VFNet, along with the Tracktor tracking methods, Byte Tracker Deep Sort in addition to the proposal of a method based on the SORT Method, for tracking anthills. Evaluations of object detection and tracking methods were carried out, and the best tracking results obtained were using the RetinaNet detector which achieved 0.817 of Average Precision (AP), 53,004 of Higher Order Tracking Accuracy (HOTA) with method Byte Tracker, 47,120 HOTA with the Proposed Method and 43,426 HOTA with the Deep Sort. Although the Byte Tracker indicates a superior HOTA result, the Method Proposed excels in counting objects, out performing other methods tracking. |
id |
UFMS_c2b4558ca6aff803aad9bc23b724913c |
---|---|
oai_identifier_str |
oai:repositorio.ufms.br:123456789/5146 |
network_acronym_str |
UFMS |
network_name_str |
Repositório Institucional da UFMS |
repository_id_str |
2124 |
spelling |
2022-10-04T01:28:51Z2022-10-04T01:28:51Z2022https://repositorio.ufms.br/handle/123456789/5146The forestry sector enables economic and environmental development, offering employment and income to the population and helping to reduce climate change. According to IBGE, in 2019, the area of forests cultivated throughout the national territory reached a total of 9.98 million hectares. Eucalyptus cultivation represents approximately 76%, equivalent to 7.61 million hectares. In the forest plantations present in Brazil, one of the main pests that intensely affect production, are leaf-cutting ants. These insects consume a lot of vegetation, attacking different plant species and causing defoliation to death. of the plant, regardless of its size, from seedlings to trees. To fight ants, chemical products are used, along with plantation monitoring. You can apply detection and tracking of objects in images of the plantations, to assist in the monitoring of the plantation and the anthills. The detection and tracking of objects in this study fit the context of tracking multiple objects, Multiple Object Tracking (MOT). The MOT task refers to locating multiple objects, identifying them, and calculating their trajectories. individual images in a sequence of images. In this study, three object detectors, Faster R-CNN, RetinaNet, and VFNet, along with the Tracktor tracking methods, Byte Tracker Deep Sort in addition to the proposal of a method based on the SORT Method, for tracking anthills. Evaluations of object detection and tracking methods were carried out, and the best tracking results obtained were using the RetinaNet detector which achieved 0.817 of Average Precision (AP), 53,004 of Higher Order Tracking Accuracy (HOTA) with method Byte Tracker, 47,120 HOTA with the Proposed Method and 43,426 HOTA with the Deep Sort. Although the Byte Tracker indicates a superior HOTA result, the Method Proposed excels in counting objects, out performing other methods tracking.O setor da silvicultura possibilita o desenvolvimento econômico e ambiental, oferecendo emprego e renda para a população e auxiliando com a redução das mudanças climáticas. Segundo IBGE, no ano de 2020, a área de florestas cultivadas em todo o território nacional alcançara um total de 9,98 milhões de hectares. O cultivo de eucalipto representa aproximadamente 76%, equivalente a 7,61 milhões de hectares. Nas plantações florestais presentes no Brasil, uma das principais pragas e que afetam intensamente a produção, são as formigas cortadeiras. Esses insetos consomem muita vegetação, atacando diferentes as espécies de plantas e causando a desfolha até a morte da planta, independendo do tamanho dela, de mudas até árvores. Para combater às formigas, são utilizados produtos químicos, juntamente com o monitoramento da plantação. É possível aplicar a detecção e o rastreamento de objetos em imagens das plantações, com o intuito de auxiliar no monitoramento da plantação e dos formigueiros. A detecção e o rastreamento dos objetos nesse estudo se encaixam no contexto do rastreamento de múltiplos objetos, Multiple Object Tracking (MOT). A tarefa do MOT refere-se na localização de múltiplos objetos, na sua identificação e no cálculo de suas trajetórias individuais, em uma sequência de imagens. Neste estudo foram avaliados três detectores de objetos, Faster R-CNN , RetinaNet e VFNet, juntamente com os métodos de rastreamento Tracktor, Byte Tracker Deep Sort, além da proposta de um método baseado no Método SORT, para rastreamento de formigueiros. As avaliações dos métodos de detecção e rastreamento de objetos foram realizadas, e o melhores resultados de rastreamento obtidos foram utilizando o detector RetinaNet que atingiu 0.817 de Average Precision (AP), 53.004 de Higher Order Tracking Accuracy (HOTA) com o método de rastreamento Byte Tracker, 47.120 de HOTA com o Método Proposto e 43.426 de HOTA com o Deep Sort. Apesar do Byte Tracker indicar resultado HOTA superior, o Método Proposto se destaca na contagem dos objetos, superando os outros métodos de rastreamento.Fundação Universidade Federal de Mato Grosso do SulUFMSBrasilAgricultura de Precisão, detecção de objetos, Deep Learning, Rastreamento de ObjetosDetecção e rastreamento de múltiplos objetos utilizando redes profundas no contexto de mapeamento de formigueiros em plantação de Eucaliptosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisJonathan de Andrade SilvaGIAN LUCAS DA SILVA RAMALHOinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSORIGINALGian.pdfGian.pdfapplication/pdf4459758https://repositorio.ufms.br/bitstream/123456789/5146/-1/Gian.pdf2f69e178d45be2deeacc1c0d0bebfbd6MD5-1123456789/51462022-10-03 21:28:52.204oai:repositorio.ufms.br:123456789/5146Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242022-10-04T01:28:52Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false |
dc.title.pt_BR.fl_str_mv |
Detecção e rastreamento de múltiplos objetos utilizando redes profundas no contexto de mapeamento de formigueiros em plantação de Eucaliptos |
title |
Detecção e rastreamento de múltiplos objetos utilizando redes profundas no contexto de mapeamento de formigueiros em plantação de Eucaliptos |
spellingShingle |
Detecção e rastreamento de múltiplos objetos utilizando redes profundas no contexto de mapeamento de formigueiros em plantação de Eucaliptos GIAN LUCAS DA SILVA RAMALHO Agricultura de Precisão, detecção de objetos, Deep Learning, Rastreamento de Objetos |
title_short |
Detecção e rastreamento de múltiplos objetos utilizando redes profundas no contexto de mapeamento de formigueiros em plantação de Eucaliptos |
title_full |
Detecção e rastreamento de múltiplos objetos utilizando redes profundas no contexto de mapeamento de formigueiros em plantação de Eucaliptos |
title_fullStr |
Detecção e rastreamento de múltiplos objetos utilizando redes profundas no contexto de mapeamento de formigueiros em plantação de Eucaliptos |
title_full_unstemmed |
Detecção e rastreamento de múltiplos objetos utilizando redes profundas no contexto de mapeamento de formigueiros em plantação de Eucaliptos |
title_sort |
Detecção e rastreamento de múltiplos objetos utilizando redes profundas no contexto de mapeamento de formigueiros em plantação de Eucaliptos |
author |
GIAN LUCAS DA SILVA RAMALHO |
author_facet |
GIAN LUCAS DA SILVA RAMALHO |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Jonathan de Andrade Silva |
dc.contributor.author.fl_str_mv |
GIAN LUCAS DA SILVA RAMALHO |
contributor_str_mv |
Jonathan de Andrade Silva |
dc.subject.por.fl_str_mv |
Agricultura de Precisão, detecção de objetos, Deep Learning, Rastreamento de Objetos |
topic |
Agricultura de Precisão, detecção de objetos, Deep Learning, Rastreamento de Objetos |
description |
The forestry sector enables economic and environmental development, offering employment and income to the population and helping to reduce climate change. According to IBGE, in 2019, the area of forests cultivated throughout the national territory reached a total of 9.98 million hectares. Eucalyptus cultivation represents approximately 76%, equivalent to 7.61 million hectares. In the forest plantations present in Brazil, one of the main pests that intensely affect production, are leaf-cutting ants. These insects consume a lot of vegetation, attacking different plant species and causing defoliation to death. of the plant, regardless of its size, from seedlings to trees. To fight ants, chemical products are used, along with plantation monitoring. You can apply detection and tracking of objects in images of the plantations, to assist in the monitoring of the plantation and the anthills. The detection and tracking of objects in this study fit the context of tracking multiple objects, Multiple Object Tracking (MOT). The MOT task refers to locating multiple objects, identifying them, and calculating their trajectories. individual images in a sequence of images. In this study, three object detectors, Faster R-CNN, RetinaNet, and VFNet, along with the Tracktor tracking methods, Byte Tracker Deep Sort in addition to the proposal of a method based on the SORT Method, for tracking anthills. Evaluations of object detection and tracking methods were carried out, and the best tracking results obtained were using the RetinaNet detector which achieved 0.817 of Average Precision (AP), 53,004 of Higher Order Tracking Accuracy (HOTA) with method Byte Tracker, 47,120 HOTA with the Proposed Method and 43,426 HOTA with the Deep Sort. Although the Byte Tracker indicates a superior HOTA result, the Method Proposed excels in counting objects, out performing other methods tracking. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-10-04T01:28:51Z |
dc.date.available.fl_str_mv |
2022-10-04T01:28:51Z |
dc.date.issued.fl_str_mv |
2022 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufms.br/handle/123456789/5146 |
url |
https://repositorio.ufms.br/handle/123456789/5146 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
dc.publisher.initials.fl_str_mv |
UFMS |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMS instname:Universidade Federal de Mato Grosso do Sul (UFMS) instacron:UFMS |
instname_str |
Universidade Federal de Mato Grosso do Sul (UFMS) |
instacron_str |
UFMS |
institution |
UFMS |
reponame_str |
Repositório Institucional da UFMS |
collection |
Repositório Institucional da UFMS |
bitstream.url.fl_str_mv |
https://repositorio.ufms.br/bitstream/123456789/5146/-1/Gian.pdf |
bitstream.checksum.fl_str_mv |
2f69e178d45be2deeacc1c0d0bebfbd6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS) |
repository.mail.fl_str_mv |
ri.prograd@ufms.br |
_version_ |
1815448008304623616 |