Investigação teórica de propriedades estruturais e físico-químicas de complexos de lantanídeos

Detalhes bibliográficos
Autor(a) principal: Daniel Mungo Brasil
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFMS
Texto Completo: https://repositorio.ufms.br/handle/123456789/6992
Resumo: Computational chemistry uses computational resources to solve highly complex mathematical equations to give information about the physicochemical properties of multielectronic systems. These equations originated from classical mechanics, a method called molecular mechanics, or from quantum mechanics, ab initio methods and density functional theory (DFT). The latter was chosen to develop the present work. DFT was developed for calculations of fundamental state properties and for those calculations involving excited states one uses its extension, the time-dependent density functional theory (TD-DFT). These computational techniques allow us to improve our understanding of the structure-property relationship, as in the case of the lanthanide complexes discussed in the present work. Lanthanide complexes have several applications, from drugs to light-converting devices, therefore there is great interest in such materials. In this work, five lanthanide complexes were studied, one formed by the gadolinium(III) ion with the usnate ligand, and two of them formed by the 3,5-dimethoxy benzoate monocarboxylate ligand with the lanthanum(III) and cerium(III) ions, a europium(III) complex with phenanthroline and 2-thenoyltrifluoroacetone and a similar complex but silylated phenanthroline. The calculations were performed using the Gaussian16 and ORCA 4.0.1 programs, the B3LYP exchange-correlation hybrid functional, and the def2-SVP basis set for light atoms. For lanthanides, the def2-TZVP basis set was used with the effective core potential. Geometry optimization and calculations for obtaining the infrared spectra and absorption of the ultraviolet-visible region were carried out for all complexes. Frontier molecular orbital diagrams were also obtained to analyze and assign the electronic spectrum. For the five studied compounds, the theoretical infrared spectra agree with the experimental spectra, the absorption spectra present a small displacement compared to the experimental spectra, but the structure of the bands matches. The theoretical data showed good agreement with the experimental data, proving that the computational methods can be used to understand the geometry and electronic structure and elucidate the absorption spectra.
id UFMS_c479147432c3b7bcfa4e11779bded537
oai_identifier_str oai:repositorio.ufms.br:123456789/6992
network_acronym_str UFMS
network_name_str Repositório Institucional da UFMS
repository_id_str 2124
spelling 2023-11-22T22:01:23Z2023-11-22T22:01:23Z2023https://repositorio.ufms.br/handle/123456789/6992Computational chemistry uses computational resources to solve highly complex mathematical equations to give information about the physicochemical properties of multielectronic systems. These equations originated from classical mechanics, a method called molecular mechanics, or from quantum mechanics, ab initio methods and density functional theory (DFT). The latter was chosen to develop the present work. DFT was developed for calculations of fundamental state properties and for those calculations involving excited states one uses its extension, the time-dependent density functional theory (TD-DFT). These computational techniques allow us to improve our understanding of the structure-property relationship, as in the case of the lanthanide complexes discussed in the present work. Lanthanide complexes have several applications, from drugs to light-converting devices, therefore there is great interest in such materials. In this work, five lanthanide complexes were studied, one formed by the gadolinium(III) ion with the usnate ligand, and two of them formed by the 3,5-dimethoxy benzoate monocarboxylate ligand with the lanthanum(III) and cerium(III) ions, a europium(III) complex with phenanthroline and 2-thenoyltrifluoroacetone and a similar complex but silylated phenanthroline. The calculations were performed using the Gaussian16 and ORCA 4.0.1 programs, the B3LYP exchange-correlation hybrid functional, and the def2-SVP basis set for light atoms. For lanthanides, the def2-TZVP basis set was used with the effective core potential. Geometry optimization and calculations for obtaining the infrared spectra and absorption of the ultraviolet-visible region were carried out for all complexes. Frontier molecular orbital diagrams were also obtained to analyze and assign the electronic spectrum. For the five studied compounds, the theoretical infrared spectra agree with the experimental spectra, the absorption spectra present a small displacement compared to the experimental spectra, but the structure of the bands matches. The theoretical data showed good agreement with the experimental data, proving that the computational methods can be used to understand the geometry and electronic structure and elucidate the absorption spectra.A química computacional utiliza recursos de computação para a resolução de equações matemáticas de elevado grau de complexidade que dão informações sobre as propriedades físico-químicas de sistemas multieletrônicos. Estas equações podem ser originadas da mecânica clássica, método chamado de mecânica molecular, ou da mecânica quântica, métodos ab initio e teoria do funcional da densidade (DFT). Este último foi escolhido para desenvolvimento do presente trabalho. A teoria DFT foi desenvolvida para cálculos de propriedades do estado fundamental e para cálculos envolvendo estados excitados se utilizada a sua extensão, a teoria do funcional da densidade dependente do tempo (TD-DFT). Estas técnicas computacionais permitem melhorar a compreensão da relação estrutura-propriedade do sistema estudado, como é o caso dos complexos de lantanídeos que são discutidos neste trabalho. Os complexos de lantanídeos possuem diversas aplicações, desde fármacos a dispositivos conversores de luz, por isso existe um grande interesse nestes materiais. Neste trabalho foram estudados cinco complexos de lantanídeos, um formado pelo íon gadolínio(III) com o ligante usnato, dois formados pelo ligante 3,5-dimetoxibenzoato monocarboxilato com os íons lantânio(III) e cério(III), um complexo de európio(III) com fenantrolina e 2-tenoiltrifluoroacetona e um complexo análogo com a fenantrolina sililada. Os cálculos foram feitos utilizando os programas Gaussian16 e ORCA 4.0.1, o funcional híbrido de troca e correlação eletrônica B3LYP e as bases def2-SVP para os átomos leves. Já para os lantanídeos foi empregada a base def2-TZVP em conjunto com o potencial efetivo de caroço adequado. Foram realizados cálculos de otimização de energia, cálculos de obtenção do espectros infravermelho e de absorção na região do ultravioleta-visível para todos os complexos. Também foram obtidas representações dos orbitais moleculares de fronteira para analisar e fazer a atribuição do espectro eletrônico. Para os cinco compostos estudados, o espectro teórico de infravermelho condiz com seu respectivo espectro experimental, o espectro de absorção apresenta um pequeno deslocamento comparados aos espectros experimentais, mas o formato das bandas são correspondentes. Os dados teóricos apresentaram boa concordância com os dados experimentais comprovando que os métodos computacionais podem ser utilizados para o entendimento da geometria, da estrutura eletrônica e na elucidação dos espectros de absorção.Fundação Universidade Federal de Mato Grosso do SulUFMSBrasilDFTTD-DFTlantanídeosespectroscopiaInvestigação teórica de propriedades estruturais e físico-químicas de complexos de lantanídeosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisLeandro Moreira de Campos PintoDaniel Mungo Brasilinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSORIGINALTese Daniel Mungo Brasil.pdfTese Daniel Mungo Brasil.pdfapplication/pdf18683399https://repositorio.ufms.br/bitstream/123456789/6992/-1/Tese%20Daniel%20Mungo%20Brasil.pdf1fd32b32db6ae22e73455203c591bea0MD5-1123456789/69922023-11-22 18:01:27.407oai:repositorio.ufms.br:123456789/6992Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242023-11-22T22:01:27Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false
dc.title.pt_BR.fl_str_mv Investigação teórica de propriedades estruturais e físico-químicas de complexos de lantanídeos
title Investigação teórica de propriedades estruturais e físico-químicas de complexos de lantanídeos
spellingShingle Investigação teórica de propriedades estruturais e físico-químicas de complexos de lantanídeos
Daniel Mungo Brasil
DFT
TD-DFT
lantanídeos
espectroscopia
title_short Investigação teórica de propriedades estruturais e físico-químicas de complexos de lantanídeos
title_full Investigação teórica de propriedades estruturais e físico-químicas de complexos de lantanídeos
title_fullStr Investigação teórica de propriedades estruturais e físico-químicas de complexos de lantanídeos
title_full_unstemmed Investigação teórica de propriedades estruturais e físico-químicas de complexos de lantanídeos
title_sort Investigação teórica de propriedades estruturais e físico-químicas de complexos de lantanídeos
author Daniel Mungo Brasil
author_facet Daniel Mungo Brasil
author_role author
dc.contributor.advisor1.fl_str_mv Leandro Moreira de Campos Pinto
dc.contributor.author.fl_str_mv Daniel Mungo Brasil
contributor_str_mv Leandro Moreira de Campos Pinto
dc.subject.por.fl_str_mv DFT
TD-DFT
lantanídeos
espectroscopia
topic DFT
TD-DFT
lantanídeos
espectroscopia
description Computational chemistry uses computational resources to solve highly complex mathematical equations to give information about the physicochemical properties of multielectronic systems. These equations originated from classical mechanics, a method called molecular mechanics, or from quantum mechanics, ab initio methods and density functional theory (DFT). The latter was chosen to develop the present work. DFT was developed for calculations of fundamental state properties and for those calculations involving excited states one uses its extension, the time-dependent density functional theory (TD-DFT). These computational techniques allow us to improve our understanding of the structure-property relationship, as in the case of the lanthanide complexes discussed in the present work. Lanthanide complexes have several applications, from drugs to light-converting devices, therefore there is great interest in such materials. In this work, five lanthanide complexes were studied, one formed by the gadolinium(III) ion with the usnate ligand, and two of them formed by the 3,5-dimethoxy benzoate monocarboxylate ligand with the lanthanum(III) and cerium(III) ions, a europium(III) complex with phenanthroline and 2-thenoyltrifluoroacetone and a similar complex but silylated phenanthroline. The calculations were performed using the Gaussian16 and ORCA 4.0.1 programs, the B3LYP exchange-correlation hybrid functional, and the def2-SVP basis set for light atoms. For lanthanides, the def2-TZVP basis set was used with the effective core potential. Geometry optimization and calculations for obtaining the infrared spectra and absorption of the ultraviolet-visible region were carried out for all complexes. Frontier molecular orbital diagrams were also obtained to analyze and assign the electronic spectrum. For the five studied compounds, the theoretical infrared spectra agree with the experimental spectra, the absorption spectra present a small displacement compared to the experimental spectra, but the structure of the bands matches. The theoretical data showed good agreement with the experimental data, proving that the computational methods can be used to understand the geometry and electronic structure and elucidate the absorption spectra.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-11-22T22:01:23Z
dc.date.available.fl_str_mv 2023-11-22T22:01:23Z
dc.date.issued.fl_str_mv 2023
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufms.br/handle/123456789/6992
url https://repositorio.ufms.br/handle/123456789/6992
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Fundação Universidade Federal de Mato Grosso do Sul
dc.publisher.initials.fl_str_mv UFMS
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Fundação Universidade Federal de Mato Grosso do Sul
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMS
instname:Universidade Federal de Mato Grosso do Sul (UFMS)
instacron:UFMS
instname_str Universidade Federal de Mato Grosso do Sul (UFMS)
instacron_str UFMS
institution UFMS
reponame_str Repositório Institucional da UFMS
collection Repositório Institucional da UFMS
bitstream.url.fl_str_mv https://repositorio.ufms.br/bitstream/123456789/6992/-1/Tese%20Daniel%20Mungo%20Brasil.pdf
bitstream.checksum.fl_str_mv 1fd32b32db6ae22e73455203c591bea0
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)
repository.mail.fl_str_mv ri.prograd@ufms.br
_version_ 1807552825780076544