Estratégias de Otimização em GPU para Análise de Sequências Biológicas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFMS |
Texto Completo: | https://repositorio.ufms.br/handle/123456789/1653 |
Resumo: | Uma importante tarefa na área de Bioinformática é comparar uma sequência em relação a uma família de sequências e, dependendo do resultado obtido, incluir essa sequência na família em questão. HMMer [17, 18] é um conjunto de ferramentas bastante utilizado para realizar essa tarefa e aplica um algoritmo denominado algoritmo de Viterbi. Existem implementações do HMMer buscando ganhos de desempenho nas mais variadas plataformas. Entretanto, o tamanho das bases de sequências biológicas vem crescendo muito nos últimos anos, fazendo com que a comparação de sequências utilizando essas bases de dados se torne cada vez mais custosa em termos de tempo de processamento. Poucas implementações utilizam como plataforma de execução a GPU e avaliam esse dispositivo, que possui grande capacidade computacional e evoluiu muito nos últimos anos. Assim, este trabalho apresenta o desenvolvimento de soluções em GPU para o algoritmo de Viterbi aplicado à análise de sequências biológicas e avalia as maneiras mais eficientes de utilizar os recursos disponíveis nessa plataforma. O acelerador proposto alcança um ótimo desempenho, com speedup médio de 48,82 e máximo de 102,83, em relação ao HMMer2 executado em um computador convencional. O desempenho obtido também é superior ao alcançado por outros aceleradores em GPU descritos na literatura. |
id |
UFMS_eb3c68479b65eb509d18998150dd1648 |
---|---|
oai_identifier_str |
oai:repositorio.ufms.br:123456789/1653 |
network_acronym_str |
UFMS |
network_name_str |
Repositório Institucional da UFMS |
repository_id_str |
2124 |
spelling |
2012-10-25T19:40:56Z2021-09-30T19:56:56Z2012https://repositorio.ufms.br/handle/123456789/1653Uma importante tarefa na área de Bioinformática é comparar uma sequência em relação a uma família de sequências e, dependendo do resultado obtido, incluir essa sequência na família em questão. HMMer [17, 18] é um conjunto de ferramentas bastante utilizado para realizar essa tarefa e aplica um algoritmo denominado algoritmo de Viterbi. Existem implementações do HMMer buscando ganhos de desempenho nas mais variadas plataformas. Entretanto, o tamanho das bases de sequências biológicas vem crescendo muito nos últimos anos, fazendo com que a comparação de sequências utilizando essas bases de dados se torne cada vez mais custosa em termos de tempo de processamento. Poucas implementações utilizam como plataforma de execução a GPU e avaliam esse dispositivo, que possui grande capacidade computacional e evoluiu muito nos últimos anos. Assim, este trabalho apresenta o desenvolvimento de soluções em GPU para o algoritmo de Viterbi aplicado à análise de sequências biológicas e avalia as maneiras mais eficientes de utilizar os recursos disponíveis nessa plataforma. O acelerador proposto alcança um ótimo desempenho, com speedup médio de 48,82 e máximo de 102,83, em relação ao HMMer2 executado em um computador convencional. O desempenho obtido também é superior ao alcançado por outros aceleradores em GPU descritos na literatura.Comparing a biological sequence to a family of sequences and, depending on the results, including this sequence into the family is an important task in Bioinformatics. HMMer [17, 18] is a set of tools widely used to perform this task and applies an algorithm called Viterbi algorithm. There are several implementations of the Viterbi algorithm that try to achieve performance gains on several different platforms. However, the size of biological sequence databases has been growing exponentially recently, making the comparison process more computationally demanding. A GPU is a hardware device with a high capability of parallel processing that has evolved very much lately, nevertheless, just a few implementations of the Viterbi algorithm use and evaluate it for this problem. This work presents the development of solutions to the Viterbi algorithm applied to biological sequence analysis on GPUs and evaluate the most efficient ways to use their resources. The accelerator proposed achieves speedups up to 102,83 and on average 48,82, with respect to HMMer’s execution on a general purpose computer. The performance achieved is higher than the ones achieved by other accelerators described in the literature.porAlgorítmos ComputacionaisComputer AlgorithmsBioinformáticaBioinformaticsBiologia Molecular - processamento de dadosMolecular Biology - electronic data processingEstratégias de Otimização em GPU para Análise de Sequências Biológicasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisMoreano, Nahri BalesdentAquino, Samuel Benjoino Ferrazinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSTHUMBNAILSamuel Benjoino Ferraz Aquino.pdf.jpgSamuel Benjoino Ferraz Aquino.pdf.jpgGenerated Thumbnailimage/jpeg1375https://repositorio.ufms.br/bitstream/123456789/1653/4/Samuel%20Benjoino%20Ferraz%20Aquino.pdf.jpge10742b4bee3f27f97a174f314dcad31MD54ORIGINALSamuel Benjoino Ferraz Aquino.pdfSamuel Benjoino Ferraz Aquino.pdfapplication/pdf6968053https://repositorio.ufms.br/bitstream/123456789/1653/1/Samuel%20Benjoino%20Ferraz%20Aquino.pdf205f9e828a4f70247f811a60ae379f2fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufms.br/bitstream/123456789/1653/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTSamuel Benjoino Ferraz Aquino.pdf.txtSamuel Benjoino Ferraz Aquino.pdf.txtExtracted texttext/plain0https://repositorio.ufms.br/bitstream/123456789/1653/3/Samuel%20Benjoino%20Ferraz%20Aquino.pdf.txtd41d8cd98f00b204e9800998ecf8427eMD53123456789/16532021-09-30 15:56:56.638oai:repositorio.ufms.br:123456789/1653Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242021-09-30T19:56:56Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false |
dc.title.pt_BR.fl_str_mv |
Estratégias de Otimização em GPU para Análise de Sequências Biológicas |
title |
Estratégias de Otimização em GPU para Análise de Sequências Biológicas |
spellingShingle |
Estratégias de Otimização em GPU para Análise de Sequências Biológicas Aquino, Samuel Benjoino Ferraz Algorítmos Computacionais Computer Algorithms Bioinformática Bioinformatics Biologia Molecular - processamento de dados Molecular Biology - electronic data processing |
title_short |
Estratégias de Otimização em GPU para Análise de Sequências Biológicas |
title_full |
Estratégias de Otimização em GPU para Análise de Sequências Biológicas |
title_fullStr |
Estratégias de Otimização em GPU para Análise de Sequências Biológicas |
title_full_unstemmed |
Estratégias de Otimização em GPU para Análise de Sequências Biológicas |
title_sort |
Estratégias de Otimização em GPU para Análise de Sequências Biológicas |
author |
Aquino, Samuel Benjoino Ferraz |
author_facet |
Aquino, Samuel Benjoino Ferraz |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Moreano, Nahri Balesdent |
dc.contributor.author.fl_str_mv |
Aquino, Samuel Benjoino Ferraz |
contributor_str_mv |
Moreano, Nahri Balesdent |
dc.subject.por.fl_str_mv |
Algorítmos Computacionais Computer Algorithms Bioinformática Bioinformatics Biologia Molecular - processamento de dados Molecular Biology - electronic data processing |
topic |
Algorítmos Computacionais Computer Algorithms Bioinformática Bioinformatics Biologia Molecular - processamento de dados Molecular Biology - electronic data processing |
description |
Uma importante tarefa na área de Bioinformática é comparar uma sequência em relação a uma família de sequências e, dependendo do resultado obtido, incluir essa sequência na família em questão. HMMer [17, 18] é um conjunto de ferramentas bastante utilizado para realizar essa tarefa e aplica um algoritmo denominado algoritmo de Viterbi. Existem implementações do HMMer buscando ganhos de desempenho nas mais variadas plataformas. Entretanto, o tamanho das bases de sequências biológicas vem crescendo muito nos últimos anos, fazendo com que a comparação de sequências utilizando essas bases de dados se torne cada vez mais custosa em termos de tempo de processamento. Poucas implementações utilizam como plataforma de execução a GPU e avaliam esse dispositivo, que possui grande capacidade computacional e evoluiu muito nos últimos anos. Assim, este trabalho apresenta o desenvolvimento de soluções em GPU para o algoritmo de Viterbi aplicado à análise de sequências biológicas e avalia as maneiras mais eficientes de utilizar os recursos disponíveis nessa plataforma. O acelerador proposto alcança um ótimo desempenho, com speedup médio de 48,82 e máximo de 102,83, em relação ao HMMer2 executado em um computador convencional. O desempenho obtido também é superior ao alcançado por outros aceleradores em GPU descritos na literatura. |
publishDate |
2012 |
dc.date.accessioned.fl_str_mv |
2012-10-25T19:40:56Z |
dc.date.issued.fl_str_mv |
2012 |
dc.date.available.fl_str_mv |
2021-09-30T19:56:56Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufms.br/handle/123456789/1653 |
url |
https://repositorio.ufms.br/handle/123456789/1653 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMS instname:Universidade Federal de Mato Grosso do Sul (UFMS) instacron:UFMS |
instname_str |
Universidade Federal de Mato Grosso do Sul (UFMS) |
instacron_str |
UFMS |
institution |
UFMS |
reponame_str |
Repositório Institucional da UFMS |
collection |
Repositório Institucional da UFMS |
bitstream.url.fl_str_mv |
https://repositorio.ufms.br/bitstream/123456789/1653/4/Samuel%20Benjoino%20Ferraz%20Aquino.pdf.jpg https://repositorio.ufms.br/bitstream/123456789/1653/1/Samuel%20Benjoino%20Ferraz%20Aquino.pdf https://repositorio.ufms.br/bitstream/123456789/1653/2/license.txt https://repositorio.ufms.br/bitstream/123456789/1653/3/Samuel%20Benjoino%20Ferraz%20Aquino.pdf.txt |
bitstream.checksum.fl_str_mv |
e10742b4bee3f27f97a174f314dcad31 205f9e828a4f70247f811a60ae379f2f 8a4605be74aa9ea9d79846c1fba20a33 d41d8cd98f00b204e9800998ecf8427e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS) |
repository.mail.fl_str_mv |
ri.prograd@ufms.br |
_version_ |
1815448033733640192 |