ALTERAÇÃO NA COBERTURA FLORESTAL DA REGIÃO NOROESTE DA AMAZÔNIA MATOGROSSENSE

Detalhes bibliográficos
Autor(a) principal: Piva, Luani Rosa de Oliveira
Data de Publicação: 2019
Outros Autores: Martins Neto, Rorai Pereira
Tipo de documento: Artigo
Idioma: por
Título da fonte: Nativa (Sinop)
Texto Completo: https://periodicoscientificos.ufmt.br/ojs/index.php/nativa/article/view/7248
Resumo: Nos últimos anos, a intensificação das atividades antrópicas modificadoras da cobertura vegetal do solo em território brasileiro vem ocorrendo em larga escala. Para fins de monitoramento das alterações da cobertura florestal, as técnicas de Sensoriamento Remoto da vegetação são ferramentas imprescindíveis, principalmente em áreas extensas e de difícil acesso, como é o caso da Amazônia brasileira. Neste sentido, objetivou-se com este trabalho identificar as mudanças no uso e cobertura do solo no período de 20 anos nos municípios de Aripuanã e Rondolândia, Noroeste do Mato Grosso, visando quantificar as áreas efetivas que sofreram alterações. Para tal, foram utilizadas técnicas de classificação digital de imagens Landsat 5 TM e Landsat 8 OLI em três diferentes datas (1995, 2005 e 2015) e, posteriormente, realizada a detecção de mudanças para o uso e cobertura do solo. A classificação digital apresentou resultados excelentes, com índice Kappa acima de 0,80 para os mapas gerados, indicando ser uma ferramenta potencial para o uso e cobertura do solo. Os resultados denotaram uma conversão de áreas florestais principalmente para atividades antrópicas agrícolas, na ordem de 472 km², o que representa uma perda de 1,3% de superfície de floresta amazônica na região de estudo.Palavras-chave: conversão de áreas florestais; uso e cobertura do solo; classificação digital; análise multitemporal. CHANGE IN FOREST COVER OF THE NORTHWEST REGION OF AMAZON IN MATO GROSSO STATE ABSTRACT: In the past few years, the intensification of anthropic activities that modify the soil-vegetation cover in Brazil’s land has been occurring on a large scale. To monitor the forest cover changes, the techniques of Remote Sensing of vegetation are essential tools, especially in large areas and with difficult access, as is the case of the Brazilian Amazon. The aim of this work was to identify the changes in land use and land cover, over the past 20 years, in the municipalities of Aripuanã and Rondolândia, Northwest of Mato Grosso State, in order to quantify the effective altered areas. Landsat 5 TM and Landsat 8 OLI digital classification images techniques were used in three different dates (1995, 2005 and 2015) and, later, the detection to the land use and land cover changes. The digital classification showed excellent results, with kappa index above 0.80 for the generated maps, indicating the digital classification as a potential tool for land use and land cover. Results reflect the conversion of forest areas mainly for agricultural activities, in the order of 472 km², representing a loss of 1.3% of Amazon forest surface in the study region.Keywords: forest conversion; land use and land cover; digital classification; multitemporal analysis.
id UFMT-2_d50f039abcca6ddea63a3506eae9d33d
oai_identifier_str oai:periodicoscientificos.ufmt.br:article/7248
network_acronym_str UFMT-2
network_name_str Nativa (Sinop)
repository_id_str
spelling ALTERAÇÃO NA COBERTURA FLORESTAL DA REGIÃO NOROESTE DA AMAZÔNIA MATOGROSSENSENos últimos anos, a intensificação das atividades antrópicas modificadoras da cobertura vegetal do solo em território brasileiro vem ocorrendo em larga escala. Para fins de monitoramento das alterações da cobertura florestal, as técnicas de Sensoriamento Remoto da vegetação são ferramentas imprescindíveis, principalmente em áreas extensas e de difícil acesso, como é o caso da Amazônia brasileira. Neste sentido, objetivou-se com este trabalho identificar as mudanças no uso e cobertura do solo no período de 20 anos nos municípios de Aripuanã e Rondolândia, Noroeste do Mato Grosso, visando quantificar as áreas efetivas que sofreram alterações. Para tal, foram utilizadas técnicas de classificação digital de imagens Landsat 5 TM e Landsat 8 OLI em três diferentes datas (1995, 2005 e 2015) e, posteriormente, realizada a detecção de mudanças para o uso e cobertura do solo. A classificação digital apresentou resultados excelentes, com índice Kappa acima de 0,80 para os mapas gerados, indicando ser uma ferramenta potencial para o uso e cobertura do solo. Os resultados denotaram uma conversão de áreas florestais principalmente para atividades antrópicas agrícolas, na ordem de 472 km², o que representa uma perda de 1,3% de superfície de floresta amazônica na região de estudo.Palavras-chave: conversão de áreas florestais; uso e cobertura do solo; classificação digital; análise multitemporal. CHANGE IN FOREST COVER OF THE NORTHWEST REGION OF AMAZON IN MATO GROSSO STATE ABSTRACT: In the past few years, the intensification of anthropic activities that modify the soil-vegetation cover in Brazil’s land has been occurring on a large scale. To monitor the forest cover changes, the techniques of Remote Sensing of vegetation are essential tools, especially in large areas and with difficult access, as is the case of the Brazilian Amazon. The aim of this work was to identify the changes in land use and land cover, over the past 20 years, in the municipalities of Aripuanã and Rondolândia, Northwest of Mato Grosso State, in order to quantify the effective altered areas. Landsat 5 TM and Landsat 8 OLI digital classification images techniques were used in three different dates (1995, 2005 and 2015) and, later, the detection to the land use and land cover changes. The digital classification showed excellent results, with kappa index above 0.80 for the generated maps, indicating the digital classification as a potential tool for land use and land cover. Results reflect the conversion of forest areas mainly for agricultural activities, in the order of 472 km², representing a loss of 1.3% of Amazon forest surface in the study region.Keywords: forest conversion; land use and land cover; digital classification; multitemporal analysis.Universidade Federal de Mato Grosso2019-09-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicoscientificos.ufmt.br/ojs/index.php/nativa/article/view/724810.31413/nativa.v7i5.7248Nativa; v. 7 n. 5 (2019); 520-526Nativa; Vol. 7 Núm. 5 (2019); 520-526Nativa; Vol. 7 No. 5 (2019); 520-5262318-767010.31413/nativa.v7i5reponame:Nativa (Sinop)instname:Universidade Federal de Mato Grosso (UFMT)instacron:UFMTporhttps://periodicoscientificos.ufmt.br/ojs/index.php/nativa/article/view/7248/6155Copyright (c) 2019 Nativainfo:eu-repo/semantics/openAccessPiva, Luani Rosa de OliveiraMartins Neto, Rorai Pereira2019-09-12T17:32:56Zoai:periodicoscientificos.ufmt.br:article/7248Revistahttps://periodicoscientificos.ufmt.br/ojs/index.php/nativaPUBhttps://periodicoscientificos.ufmt.br/ojs/index.php/nativa/oai||rrmelo2@yahoo.com.br2318-76702318-7670opendoar:2019-09-12T17:32:56Nativa (Sinop) - Universidade Federal de Mato Grosso (UFMT)false
dc.title.none.fl_str_mv ALTERAÇÃO NA COBERTURA FLORESTAL DA REGIÃO NOROESTE DA AMAZÔNIA MATOGROSSENSE
title ALTERAÇÃO NA COBERTURA FLORESTAL DA REGIÃO NOROESTE DA AMAZÔNIA MATOGROSSENSE
spellingShingle ALTERAÇÃO NA COBERTURA FLORESTAL DA REGIÃO NOROESTE DA AMAZÔNIA MATOGROSSENSE
Piva, Luani Rosa de Oliveira
title_short ALTERAÇÃO NA COBERTURA FLORESTAL DA REGIÃO NOROESTE DA AMAZÔNIA MATOGROSSENSE
title_full ALTERAÇÃO NA COBERTURA FLORESTAL DA REGIÃO NOROESTE DA AMAZÔNIA MATOGROSSENSE
title_fullStr ALTERAÇÃO NA COBERTURA FLORESTAL DA REGIÃO NOROESTE DA AMAZÔNIA MATOGROSSENSE
title_full_unstemmed ALTERAÇÃO NA COBERTURA FLORESTAL DA REGIÃO NOROESTE DA AMAZÔNIA MATOGROSSENSE
title_sort ALTERAÇÃO NA COBERTURA FLORESTAL DA REGIÃO NOROESTE DA AMAZÔNIA MATOGROSSENSE
author Piva, Luani Rosa de Oliveira
author_facet Piva, Luani Rosa de Oliveira
Martins Neto, Rorai Pereira
author_role author
author2 Martins Neto, Rorai Pereira
author2_role author
dc.contributor.author.fl_str_mv Piva, Luani Rosa de Oliveira
Martins Neto, Rorai Pereira
description Nos últimos anos, a intensificação das atividades antrópicas modificadoras da cobertura vegetal do solo em território brasileiro vem ocorrendo em larga escala. Para fins de monitoramento das alterações da cobertura florestal, as técnicas de Sensoriamento Remoto da vegetação são ferramentas imprescindíveis, principalmente em áreas extensas e de difícil acesso, como é o caso da Amazônia brasileira. Neste sentido, objetivou-se com este trabalho identificar as mudanças no uso e cobertura do solo no período de 20 anos nos municípios de Aripuanã e Rondolândia, Noroeste do Mato Grosso, visando quantificar as áreas efetivas que sofreram alterações. Para tal, foram utilizadas técnicas de classificação digital de imagens Landsat 5 TM e Landsat 8 OLI em três diferentes datas (1995, 2005 e 2015) e, posteriormente, realizada a detecção de mudanças para o uso e cobertura do solo. A classificação digital apresentou resultados excelentes, com índice Kappa acima de 0,80 para os mapas gerados, indicando ser uma ferramenta potencial para o uso e cobertura do solo. Os resultados denotaram uma conversão de áreas florestais principalmente para atividades antrópicas agrícolas, na ordem de 472 km², o que representa uma perda de 1,3% de superfície de floresta amazônica na região de estudo.Palavras-chave: conversão de áreas florestais; uso e cobertura do solo; classificação digital; análise multitemporal. CHANGE IN FOREST COVER OF THE NORTHWEST REGION OF AMAZON IN MATO GROSSO STATE ABSTRACT: In the past few years, the intensification of anthropic activities that modify the soil-vegetation cover in Brazil’s land has been occurring on a large scale. To monitor the forest cover changes, the techniques of Remote Sensing of vegetation are essential tools, especially in large areas and with difficult access, as is the case of the Brazilian Amazon. The aim of this work was to identify the changes in land use and land cover, over the past 20 years, in the municipalities of Aripuanã and Rondolândia, Northwest of Mato Grosso State, in order to quantify the effective altered areas. Landsat 5 TM and Landsat 8 OLI digital classification images techniques were used in three different dates (1995, 2005 and 2015) and, later, the detection to the land use and land cover changes. The digital classification showed excellent results, with kappa index above 0.80 for the generated maps, indicating the digital classification as a potential tool for land use and land cover. Results reflect the conversion of forest areas mainly for agricultural activities, in the order of 472 km², representing a loss of 1.3% of Amazon forest surface in the study region.Keywords: forest conversion; land use and land cover; digital classification; multitemporal analysis.
publishDate 2019
dc.date.none.fl_str_mv 2019-09-12
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicoscientificos.ufmt.br/ojs/index.php/nativa/article/view/7248
10.31413/nativa.v7i5.7248
url https://periodicoscientificos.ufmt.br/ojs/index.php/nativa/article/view/7248
identifier_str_mv 10.31413/nativa.v7i5.7248
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicoscientificos.ufmt.br/ojs/index.php/nativa/article/view/7248/6155
dc.rights.driver.fl_str_mv Copyright (c) 2019 Nativa
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2019 Nativa
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Mato Grosso
publisher.none.fl_str_mv Universidade Federal de Mato Grosso
dc.source.none.fl_str_mv Nativa; v. 7 n. 5 (2019); 520-526
Nativa; Vol. 7 Núm. 5 (2019); 520-526
Nativa; Vol. 7 No. 5 (2019); 520-526
2318-7670
10.31413/nativa.v7i5
reponame:Nativa (Sinop)
instname:Universidade Federal de Mato Grosso (UFMT)
instacron:UFMT
instname_str Universidade Federal de Mato Grosso (UFMT)
instacron_str UFMT
institution UFMT
reponame_str Nativa (Sinop)
collection Nativa (Sinop)
repository.name.fl_str_mv Nativa (Sinop) - Universidade Federal de Mato Grosso (UFMT)
repository.mail.fl_str_mv ||rrmelo2@yahoo.com.br
_version_ 1799711196537946112