RESOLUTION STRATEGY FOR PROBLEM-SITUATION ANCHORED IN THE THEORY OF CONCEPTUAL FIELDS

Detalhes bibliográficos
Autor(a) principal: Santos, Rudinei Alves dos
Data de Publicação: 2021
Outros Autores: Silva, Francisco Hermes Santos da, Dias, Joelson Magno, Maduro, Vanessa Pires Santos
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista Reamec
Texto Completo: https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030
Resumo: The pandemic caused by COVID-19 led to the suspension of in-person classes, forcing those involved in the teaching and learning process to seek, as a matter of urgency, strategies that would enable the continuity of school activities. However, communication between teacher and student was relatively impaired due to technological limitations or lack of affinity with virtual meetings. Therefore, the present work, elaborated from a qualitative approach, in the molds of the bibliographical research and anchored in the Theory of Conceptual Fields - TCF, aimed to propose a strategy of resolution of situations in the conceptual field of optimization that favors the communication between the actors in the teaching and learning process, enabling the reflection of those involved and the (re)direction of the teacher's pedagogical planning. We conclude that the strategy of solving hypotheses of the conceptual field of optimization through subtasks, in light of the TCC, is a resource that can contribute to better communication between students and teachers, especially in virtual meetings. Furthermore, we consider that the strategy discussed in this article is not exclusive to the conceptual field approach and can be tested in other conceptual fields and other areas of knowledge, as in times like these, no science-based resource should be discarded.
id UFMT-5_640adda0f22f3c933f412f7eacb96d65
oai_identifier_str oai:periodicoscientificos.ufmt.br:article/13030
network_acronym_str UFMT-5
network_name_str Revista Reamec
repository_id_str
spelling RESOLUTION STRATEGY FOR PROBLEM-SITUATION ANCHORED IN THE THEORY OF CONCEPTUAL FIELDSESTRATEGIA DE RESOLUCIÓN DE SITUACIÓN PROBLEMA ANCLADA EN LA TEORÍA DE CAMPOS CONCEPTUALESESTRATÉGIA DE RESOLUÇÃO DE SITUAÇÕES-PROBLEMA ANCORADA NA TEORIA DOS CAMPOS CONCEITUAISOperativa invarianteMejoramientoPunto críticoSubtareaInvariante OperatórioOtimizaçãoPonto CríticoSubtarefaOperative InvariantOptimizationCritical pointSubtaskThe pandemic caused by COVID-19 led to the suspension of in-person classes, forcing those involved in the teaching and learning process to seek, as a matter of urgency, strategies that would enable the continuity of school activities. However, communication between teacher and student was relatively impaired due to technological limitations or lack of affinity with virtual meetings. Therefore, the present work, elaborated from a qualitative approach, in the molds of the bibliographical research and anchored in the Theory of Conceptual Fields - TCF, aimed to propose a strategy of resolution of situations in the conceptual field of optimization that favors the communication between the actors in the teaching and learning process, enabling the reflection of those involved and the (re)direction of the teacher's pedagogical planning. We conclude that the strategy of solving hypotheses of the conceptual field of optimization through subtasks, in light of the TCC, is a resource that can contribute to better communication between students and teachers, especially in virtual meetings. Furthermore, we consider that the strategy discussed in this article is not exclusive to the conceptual field approach and can be tested in other conceptual fields and other areas of knowledge, as in times like these, no science-based resource should be discarded.La pandemia de COVID-19 provocó la suspensión de las clases presenciales. Obligando a los actores involucrados en el proceso de enseñanza y aprendizaje a buscar, de manera urgente, estrategias que permitan la continuidad de las actividades escolares. Sin embargo, la comunicación entre profesor y alumno se vio muy afectada debido a limitaciones tecnológicas o falta de afinidad con las reuniones virtuales. Así, este trabajo, construido desde un enfoque cualitativo, en la línea de una investigación bibliográfica y anclado en la Teoría de los Campos Conceptuales - TCC, tuvo como objetivo proponer una estrategia de resolución de situaciones en el campo conceptual de la optimización, que favorezca la comunicación entre los actores del proceso de enseñanza y aprendizaje, posibilitando la reflexión de los involucrados y la (re) dirección de la planificación pedagógica del docente. Se concluye que la estrategia de resolución de situaciones en el campo conceptual de optimización a través de subtareas, a la sombra de TCC, es un recurso que puede contribuir a una mejor comunicación entre alumnos y docentes, especialmente en momentos de encuentros virtuales. Además, se considera que la estrategia discutida en este artículo no es exclusiva del campo abordado, pudiendo ensayarse en otros campos conceptuales y otras áreas del conocimiento, ya que en tiempos como este no se debe descartar ningún recurso basado en la ciencia.A pandemia da COVID-19 conduziu a suspensão de aulas presenciais. Obrigando os atores envolvidos no processo de ensino e aprendizagem a buscarem, de forma emergencial, estratégias que possibilitassem a continuidade das atividades escolares. Entretanto, a comunicação entre professor e aluno ficou bastante prejudicada, devido às limitações tecnológicas, ou a pouca afinidade com os encontros virtuais. Assim, este trabalho construído a partir de uma abordagem qualitativa, aos moldes de uma pesquisa de cunho bibliográfico e ancorada na Teoria dos Campos Conceituais - TCC, objetivou propor estratégia de resolução de situações do campo conceitual da otimização, que favoreça a comunicação entre os atores do processo de ensino e aprendizagem, possibilitando a reflexão dos envolvidos e o (re) direcionamento do planejamento pedagógico do professor. Conclui-se que a estratégia de resolução de situações do campo conceitual da otimização através de subtarefas, a sombra da TCC, é um recurso que pode contribuir com a melhor comunicação entre alunos e professores, principalmente em momentos de encontros virtuais. Outrossim, considera-se que a estratégia discutida neste artigo não é exclusiva do campo abordado, podendo ser experimentada em outros campos conceituais e outras áreas do conhecimento, pois em tempos como este, nenhum recurso baseado na ciência deve ser descartado.Universidade Federal de Mato Grosso (UFMT)2021-11-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtigo avaliado pelos paresapplication/pdfapplication/ziphttps://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/1303010.26571/reamec.v9i3.13030 REAMEC - Red Amazónica de Educación en Ciencias y Matemáticas; Vol. 9 Núm. 3 (2021): Setembro a dezembro de 2021; e21095REAMEC - Rede Amazônica de Educação em Ciências e Matemática; v. 9 n. 3 (2021): Setembro a dezembro de 2021; e21095REAMEC Journal - Amazonian Network of Mathematical Education; Vol. 9 No. 3 (2021): Setembro a dezembro de 2021; e210952318-6674reponame:Revista Reamecinstname:Universidade Federal de Mato Grosso (UFMT)instacron:UFMTporhttps://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10017https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10518https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10519https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10520https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10522https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10521Copyright (c) 2021 Rudinei Alves dos Santos, Francisco Hermes Santos da Silva, Joelson Magno Dias, Vanessa Pires Santos Madurohttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessSantos, Rudinei Alves dos Silva, Francisco Hermes Santos daDias, Joelson MagnoMaduro, Vanessa Pires Santos2021-12-31T17:31:24Zoai:periodicoscientificos.ufmt.br:article/13030Revistahttp://periodicoscientificos.ufmt.br/ojs/index.php/reamec/indexPUBhttp://periodicoscientificos.ufmt.br/ojs/index.php/reamec/oairevistareamec@gmail.com||2318-66742318-6674opendoar:2021-12-31T17:31:24Revista Reamec - Universidade Federal de Mato Grosso (UFMT)false
dc.title.none.fl_str_mv RESOLUTION STRATEGY FOR PROBLEM-SITUATION ANCHORED IN THE THEORY OF CONCEPTUAL FIELDS
ESTRATEGIA DE RESOLUCIÓN DE SITUACIÓN PROBLEMA ANCLADA EN LA TEORÍA DE CAMPOS CONCEPTUALES
ESTRATÉGIA DE RESOLUÇÃO DE SITUAÇÕES-PROBLEMA ANCORADA NA TEORIA DOS CAMPOS CONCEITUAIS
title RESOLUTION STRATEGY FOR PROBLEM-SITUATION ANCHORED IN THE THEORY OF CONCEPTUAL FIELDS
spellingShingle RESOLUTION STRATEGY FOR PROBLEM-SITUATION ANCHORED IN THE THEORY OF CONCEPTUAL FIELDS
Santos, Rudinei Alves dos
Operativa invariante
Mejoramiento
Punto crítico
Subtarea
Invariante Operatório
Otimização
Ponto Crítico
Subtarefa
Operative Invariant
Optimization
Critical point
Subtask
title_short RESOLUTION STRATEGY FOR PROBLEM-SITUATION ANCHORED IN THE THEORY OF CONCEPTUAL FIELDS
title_full RESOLUTION STRATEGY FOR PROBLEM-SITUATION ANCHORED IN THE THEORY OF CONCEPTUAL FIELDS
title_fullStr RESOLUTION STRATEGY FOR PROBLEM-SITUATION ANCHORED IN THE THEORY OF CONCEPTUAL FIELDS
title_full_unstemmed RESOLUTION STRATEGY FOR PROBLEM-SITUATION ANCHORED IN THE THEORY OF CONCEPTUAL FIELDS
title_sort RESOLUTION STRATEGY FOR PROBLEM-SITUATION ANCHORED IN THE THEORY OF CONCEPTUAL FIELDS
author Santos, Rudinei Alves dos
author_facet Santos, Rudinei Alves dos
Silva, Francisco Hermes Santos da
Dias, Joelson Magno
Maduro, Vanessa Pires Santos
author_role author
author2 Silva, Francisco Hermes Santos da
Dias, Joelson Magno
Maduro, Vanessa Pires Santos
author2_role author
author
author
dc.contributor.author.fl_str_mv Santos, Rudinei Alves dos
Silva, Francisco Hermes Santos da
Dias, Joelson Magno
Maduro, Vanessa Pires Santos
dc.subject.por.fl_str_mv Operativa invariante
Mejoramiento
Punto crítico
Subtarea
Invariante Operatório
Otimização
Ponto Crítico
Subtarefa
Operative Invariant
Optimization
Critical point
Subtask
topic Operativa invariante
Mejoramiento
Punto crítico
Subtarea
Invariante Operatório
Otimização
Ponto Crítico
Subtarefa
Operative Invariant
Optimization
Critical point
Subtask
description The pandemic caused by COVID-19 led to the suspension of in-person classes, forcing those involved in the teaching and learning process to seek, as a matter of urgency, strategies that would enable the continuity of school activities. However, communication between teacher and student was relatively impaired due to technological limitations or lack of affinity with virtual meetings. Therefore, the present work, elaborated from a qualitative approach, in the molds of the bibliographical research and anchored in the Theory of Conceptual Fields - TCF, aimed to propose a strategy of resolution of situations in the conceptual field of optimization that favors the communication between the actors in the teaching and learning process, enabling the reflection of those involved and the (re)direction of the teacher's pedagogical planning. We conclude that the strategy of solving hypotheses of the conceptual field of optimization through subtasks, in light of the TCC, is a resource that can contribute to better communication between students and teachers, especially in virtual meetings. Furthermore, we consider that the strategy discussed in this article is not exclusive to the conceptual field approach and can be tested in other conceptual fields and other areas of knowledge, as in times like these, no science-based resource should be discarded.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-13
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artigo avaliado pelos pares
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030
10.26571/reamec.v9i3.13030
url https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030
identifier_str_mv 10.26571/reamec.v9i3.13030
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10017
https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10518
https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10519
https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10520
https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10522
https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10521
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/zip
dc.publisher.none.fl_str_mv Universidade Federal de Mato Grosso (UFMT)
publisher.none.fl_str_mv Universidade Federal de Mato Grosso (UFMT)
dc.source.none.fl_str_mv REAMEC - Red Amazónica de Educación en Ciencias y Matemáticas; Vol. 9 Núm. 3 (2021): Setembro a dezembro de 2021; e21095
REAMEC - Rede Amazônica de Educação em Ciências e Matemática; v. 9 n. 3 (2021): Setembro a dezembro de 2021; e21095
REAMEC Journal - Amazonian Network of Mathematical Education; Vol. 9 No. 3 (2021): Setembro a dezembro de 2021; e21095
2318-6674
reponame:Revista Reamec
instname:Universidade Federal de Mato Grosso (UFMT)
instacron:UFMT
instname_str Universidade Federal de Mato Grosso (UFMT)
instacron_str UFMT
institution UFMT
reponame_str Revista Reamec
collection Revista Reamec
repository.name.fl_str_mv Revista Reamec - Universidade Federal de Mato Grosso (UFMT)
repository.mail.fl_str_mv revistareamec@gmail.com||
_version_ 1797174817036697600