RESOLUTION STRATEGY FOR PROBLEM-SITUATION ANCHORED IN THE THEORY OF CONCEPTUAL FIELDS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista Reamec |
Texto Completo: | https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030 |
Resumo: | The pandemic caused by COVID-19 led to the suspension of in-person classes, forcing those involved in the teaching and learning process to seek, as a matter of urgency, strategies that would enable the continuity of school activities. However, communication between teacher and student was relatively impaired due to technological limitations or lack of affinity with virtual meetings. Therefore, the present work, elaborated from a qualitative approach, in the molds of the bibliographical research and anchored in the Theory of Conceptual Fields - TCF, aimed to propose a strategy of resolution of situations in the conceptual field of optimization that favors the communication between the actors in the teaching and learning process, enabling the reflection of those involved and the (re)direction of the teacher's pedagogical planning. We conclude that the strategy of solving hypotheses of the conceptual field of optimization through subtasks, in light of the TCC, is a resource that can contribute to better communication between students and teachers, especially in virtual meetings. Furthermore, we consider that the strategy discussed in this article is not exclusive to the conceptual field approach and can be tested in other conceptual fields and other areas of knowledge, as in times like these, no science-based resource should be discarded. |
id |
UFMT-5_640adda0f22f3c933f412f7eacb96d65 |
---|---|
oai_identifier_str |
oai:periodicoscientificos.ufmt.br:article/13030 |
network_acronym_str |
UFMT-5 |
network_name_str |
Revista Reamec |
repository_id_str |
|
spelling |
RESOLUTION STRATEGY FOR PROBLEM-SITUATION ANCHORED IN THE THEORY OF CONCEPTUAL FIELDSESTRATEGIA DE RESOLUCIÓN DE SITUACIÓN PROBLEMA ANCLADA EN LA TEORÍA DE CAMPOS CONCEPTUALESESTRATÉGIA DE RESOLUÇÃO DE SITUAÇÕES-PROBLEMA ANCORADA NA TEORIA DOS CAMPOS CONCEITUAISOperativa invarianteMejoramientoPunto críticoSubtareaInvariante OperatórioOtimizaçãoPonto CríticoSubtarefaOperative InvariantOptimizationCritical pointSubtaskThe pandemic caused by COVID-19 led to the suspension of in-person classes, forcing those involved in the teaching and learning process to seek, as a matter of urgency, strategies that would enable the continuity of school activities. However, communication between teacher and student was relatively impaired due to technological limitations or lack of affinity with virtual meetings. Therefore, the present work, elaborated from a qualitative approach, in the molds of the bibliographical research and anchored in the Theory of Conceptual Fields - TCF, aimed to propose a strategy of resolution of situations in the conceptual field of optimization that favors the communication between the actors in the teaching and learning process, enabling the reflection of those involved and the (re)direction of the teacher's pedagogical planning. We conclude that the strategy of solving hypotheses of the conceptual field of optimization through subtasks, in light of the TCC, is a resource that can contribute to better communication between students and teachers, especially in virtual meetings. Furthermore, we consider that the strategy discussed in this article is not exclusive to the conceptual field approach and can be tested in other conceptual fields and other areas of knowledge, as in times like these, no science-based resource should be discarded.La pandemia de COVID-19 provocó la suspensión de las clases presenciales. Obligando a los actores involucrados en el proceso de enseñanza y aprendizaje a buscar, de manera urgente, estrategias que permitan la continuidad de las actividades escolares. Sin embargo, la comunicación entre profesor y alumno se vio muy afectada debido a limitaciones tecnológicas o falta de afinidad con las reuniones virtuales. Así, este trabajo, construido desde un enfoque cualitativo, en la línea de una investigación bibliográfica y anclado en la Teoría de los Campos Conceptuales - TCC, tuvo como objetivo proponer una estrategia de resolución de situaciones en el campo conceptual de la optimización, que favorezca la comunicación entre los actores del proceso de enseñanza y aprendizaje, posibilitando la reflexión de los involucrados y la (re) dirección de la planificación pedagógica del docente. Se concluye que la estrategia de resolución de situaciones en el campo conceptual de optimización a través de subtareas, a la sombra de TCC, es un recurso que puede contribuir a una mejor comunicación entre alumnos y docentes, especialmente en momentos de encuentros virtuales. Además, se considera que la estrategia discutida en este artículo no es exclusiva del campo abordado, pudiendo ensayarse en otros campos conceptuales y otras áreas del conocimiento, ya que en tiempos como este no se debe descartar ningún recurso basado en la ciencia.A pandemia da COVID-19 conduziu a suspensão de aulas presenciais. Obrigando os atores envolvidos no processo de ensino e aprendizagem a buscarem, de forma emergencial, estratégias que possibilitassem a continuidade das atividades escolares. Entretanto, a comunicação entre professor e aluno ficou bastante prejudicada, devido às limitações tecnológicas, ou a pouca afinidade com os encontros virtuais. Assim, este trabalho construído a partir de uma abordagem qualitativa, aos moldes de uma pesquisa de cunho bibliográfico e ancorada na Teoria dos Campos Conceituais - TCC, objetivou propor estratégia de resolução de situações do campo conceitual da otimização, que favoreça a comunicação entre os atores do processo de ensino e aprendizagem, possibilitando a reflexão dos envolvidos e o (re) direcionamento do planejamento pedagógico do professor. Conclui-se que a estratégia de resolução de situações do campo conceitual da otimização através de subtarefas, a sombra da TCC, é um recurso que pode contribuir com a melhor comunicação entre alunos e professores, principalmente em momentos de encontros virtuais. Outrossim, considera-se que a estratégia discutida neste artigo não é exclusiva do campo abordado, podendo ser experimentada em outros campos conceituais e outras áreas do conhecimento, pois em tempos como este, nenhum recurso baseado na ciência deve ser descartado.Universidade Federal de Mato Grosso (UFMT)2021-11-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtigo avaliado pelos paresapplication/pdfapplication/ziphttps://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/1303010.26571/reamec.v9i3.13030 REAMEC - Red Amazónica de Educación en Ciencias y Matemáticas; Vol. 9 Núm. 3 (2021): Setembro a dezembro de 2021; e21095REAMEC - Rede Amazônica de Educação em Ciências e Matemática; v. 9 n. 3 (2021): Setembro a dezembro de 2021; e21095REAMEC Journal - Amazonian Network of Mathematical Education; Vol. 9 No. 3 (2021): Setembro a dezembro de 2021; e210952318-6674reponame:Revista Reamecinstname:Universidade Federal de Mato Grosso (UFMT)instacron:UFMTporhttps://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10017https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10518https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10519https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10520https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10522https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10521Copyright (c) 2021 Rudinei Alves dos Santos, Francisco Hermes Santos da Silva, Joelson Magno Dias, Vanessa Pires Santos Madurohttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessSantos, Rudinei Alves dos Silva, Francisco Hermes Santos daDias, Joelson MagnoMaduro, Vanessa Pires Santos2021-12-31T17:31:24Zoai:periodicoscientificos.ufmt.br:article/13030Revistahttp://periodicoscientificos.ufmt.br/ojs/index.php/reamec/indexPUBhttp://periodicoscientificos.ufmt.br/ojs/index.php/reamec/oairevistareamec@gmail.com||2318-66742318-6674opendoar:2021-12-31T17:31:24Revista Reamec - Universidade Federal de Mato Grosso (UFMT)false |
dc.title.none.fl_str_mv |
RESOLUTION STRATEGY FOR PROBLEM-SITUATION ANCHORED IN THE THEORY OF CONCEPTUAL FIELDS ESTRATEGIA DE RESOLUCIÓN DE SITUACIÓN PROBLEMA ANCLADA EN LA TEORÍA DE CAMPOS CONCEPTUALES ESTRATÉGIA DE RESOLUÇÃO DE SITUAÇÕES-PROBLEMA ANCORADA NA TEORIA DOS CAMPOS CONCEITUAIS |
title |
RESOLUTION STRATEGY FOR PROBLEM-SITUATION ANCHORED IN THE THEORY OF CONCEPTUAL FIELDS |
spellingShingle |
RESOLUTION STRATEGY FOR PROBLEM-SITUATION ANCHORED IN THE THEORY OF CONCEPTUAL FIELDS Santos, Rudinei Alves dos Operativa invariante Mejoramiento Punto crítico Subtarea Invariante Operatório Otimização Ponto Crítico Subtarefa Operative Invariant Optimization Critical point Subtask |
title_short |
RESOLUTION STRATEGY FOR PROBLEM-SITUATION ANCHORED IN THE THEORY OF CONCEPTUAL FIELDS |
title_full |
RESOLUTION STRATEGY FOR PROBLEM-SITUATION ANCHORED IN THE THEORY OF CONCEPTUAL FIELDS |
title_fullStr |
RESOLUTION STRATEGY FOR PROBLEM-SITUATION ANCHORED IN THE THEORY OF CONCEPTUAL FIELDS |
title_full_unstemmed |
RESOLUTION STRATEGY FOR PROBLEM-SITUATION ANCHORED IN THE THEORY OF CONCEPTUAL FIELDS |
title_sort |
RESOLUTION STRATEGY FOR PROBLEM-SITUATION ANCHORED IN THE THEORY OF CONCEPTUAL FIELDS |
author |
Santos, Rudinei Alves dos |
author_facet |
Santos, Rudinei Alves dos Silva, Francisco Hermes Santos da Dias, Joelson Magno Maduro, Vanessa Pires Santos |
author_role |
author |
author2 |
Silva, Francisco Hermes Santos da Dias, Joelson Magno Maduro, Vanessa Pires Santos |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Santos, Rudinei Alves dos Silva, Francisco Hermes Santos da Dias, Joelson Magno Maduro, Vanessa Pires Santos |
dc.subject.por.fl_str_mv |
Operativa invariante Mejoramiento Punto crítico Subtarea Invariante Operatório Otimização Ponto Crítico Subtarefa Operative Invariant Optimization Critical point Subtask |
topic |
Operativa invariante Mejoramiento Punto crítico Subtarea Invariante Operatório Otimização Ponto Crítico Subtarefa Operative Invariant Optimization Critical point Subtask |
description |
The pandemic caused by COVID-19 led to the suspension of in-person classes, forcing those involved in the teaching and learning process to seek, as a matter of urgency, strategies that would enable the continuity of school activities. However, communication between teacher and student was relatively impaired due to technological limitations or lack of affinity with virtual meetings. Therefore, the present work, elaborated from a qualitative approach, in the molds of the bibliographical research and anchored in the Theory of Conceptual Fields - TCF, aimed to propose a strategy of resolution of situations in the conceptual field of optimization that favors the communication between the actors in the teaching and learning process, enabling the reflection of those involved and the (re)direction of the teacher's pedagogical planning. We conclude that the strategy of solving hypotheses of the conceptual field of optimization through subtasks, in light of the TCC, is a resource that can contribute to better communication between students and teachers, especially in virtual meetings. Furthermore, we consider that the strategy discussed in this article is not exclusive to the conceptual field approach and can be tested in other conceptual fields and other areas of knowledge, as in times like these, no science-based resource should be discarded. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-13 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artigo avaliado pelos pares |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030 10.26571/reamec.v9i3.13030 |
url |
https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030 |
identifier_str_mv |
10.26571/reamec.v9i3.13030 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10017 https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10518 https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10519 https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10520 https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10522 https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/13030/10521 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/zip |
dc.publisher.none.fl_str_mv |
Universidade Federal de Mato Grosso (UFMT) |
publisher.none.fl_str_mv |
Universidade Federal de Mato Grosso (UFMT) |
dc.source.none.fl_str_mv |
REAMEC - Red Amazónica de Educación en Ciencias y Matemáticas; Vol. 9 Núm. 3 (2021): Setembro a dezembro de 2021; e21095 REAMEC - Rede Amazônica de Educação em Ciências e Matemática; v. 9 n. 3 (2021): Setembro a dezembro de 2021; e21095 REAMEC Journal - Amazonian Network of Mathematical Education; Vol. 9 No. 3 (2021): Setembro a dezembro de 2021; e21095 2318-6674 reponame:Revista Reamec instname:Universidade Federal de Mato Grosso (UFMT) instacron:UFMT |
instname_str |
Universidade Federal de Mato Grosso (UFMT) |
instacron_str |
UFMT |
institution |
UFMT |
reponame_str |
Revista Reamec |
collection |
Revista Reamec |
repository.name.fl_str_mv |
Revista Reamec - Universidade Federal de Mato Grosso (UFMT) |
repository.mail.fl_str_mv |
revistareamec@gmail.com|| |
_version_ |
1797174817036697600 |