Preparação, análise microestrutural e propriedades magnéticas de nanocompósitos de CoFe2O4/CoFe2
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFMT |
Texto Completo: | http://ri.ufmt.br/handle/1/5613 |
Resumo: | In this study, the preparation process of 24/2 nanocomposites will be carried out, followed by a detailed analysis of their internal structure. In addition, the magnetic properties will be investigated to optimise these characteristics in the samples. The synthesis of 24 was carried out using the gel-combustion method, and the substance was subjected to different calcination temperatures for a period of 2 hours under normal atmospheric conditions. Subsequently, the samples were submitted to milling processes at different periods to induce a high residual micro deformation inside the particles and increase the coercivity. After the synthesis of the cobalt ferrite nanocomposite, the next step is the reduction using hydrogen. In this process, the nanocomposite is exposed to a controlled environment containing gaseous hydrogen. At a temperature of 350°C and in time intervals of 10, 15, 20, 25 and 30 minutes, the chemical reduction reaction occurs, in which the hydrogen reacts with the oxides present in the nanocomposite. In addition to the 24/2 nanocomposite synthesis method with 2 gas, it is possible to obtain it with the high-energy milling method. In this way, ground cobalt ferrite is mixed with different concentrations of cobalt iron. Then, the sample is subjected to a ball mill for 1 minute to obtain a uniform mixture and a magnetic coupling between both phases, thus forming the 24/2 nanocomposite. In samples calcined at different temperatures, agglomeration of nanoparticles forms during heating at high temperatures, which contributes to the growth of crystallites and, consequently, to an increase in saturation magnetization. The redistribution of cations, specifically the 3+ ions, in octahedral sites is also responsible for the increase in saturation magnetization. Furthermore, the reduction in the magnetic coercivity of cobalt ferrite with increasing calcination temperature is caused by changes in the microstructure and distribution of cations in the ferrite crystal lattice. .The unground sample has the following characteristics: magnetic coercivity () of 0.4 KOe, magnetic saturation of 75 emu/g, remanence rate ⁄ of 0.38 and maximum magnetic energy () of 2.0 3 ⁄ . After grinding, there was a considerable increase in almost all attributes, which became = 3.7 kOe, = 66 emu/g, ⁄ = 0.56, and () = 9.6 3 ⁄ . The results indicate that this increase is related to the addition of stress and the density of microstructural defects. An increase in magnetic anisotropy is also observed with milling, which is attributed to anisotropic stress. Thus, it is concluded that ultrafast grinding brings several advantages over conventional grinding, especially in terms of efficiency, where you have a tenfold reduction in grinding time and a considerable increase in magnetic properties. Heat treatment in a hydrogen atmosphere is effective in transforming cobalt ferrite into cobalt iron. This process is fast and efficient, reducing cobalt ferrite by approximately 90% in just 20 minutes. Additionally, heat treatment increases the saturation magnetization of cobalt ferrite, making it more magnetic. On the other hand, the magnetic coercivity of cobalt ferrite decreases when reduced in iron-cobalt, which is expected since iron-cobalt is magnetically soft. The method of producing 24/2 nanocomposite through high-energy ball mill has several advantages. The high efficiency and speed of the process stands out, which is 60 times faster compared to other techniques. |
id |
UFMT_801ea1d5fe40c3342d4c815e2daa825b |
---|---|
oai_identifier_str |
oai:localhost:1/5613 |
network_acronym_str |
UFMT |
network_name_str |
Repositório Institucional da UFMT |
repository_id_str |
|
spelling |
Preparação, análise microestrutural e propriedades magnéticas de nanocompósitos de CoFe2O4/CoFe2Moagem ultrarrápidaFerrita de cobaltoAlta coercividadeCNPQ::CIENCIAS EXATAS E DA TERRA::FISICAUltrafast grindingCobalt ferriteHigh coercivityIn this study, the preparation process of 24/2 nanocomposites will be carried out, followed by a detailed analysis of their internal structure. In addition, the magnetic properties will be investigated to optimise these characteristics in the samples. The synthesis of 24 was carried out using the gel-combustion method, and the substance was subjected to different calcination temperatures for a period of 2 hours under normal atmospheric conditions. Subsequently, the samples were submitted to milling processes at different periods to induce a high residual micro deformation inside the particles and increase the coercivity. After the synthesis of the cobalt ferrite nanocomposite, the next step is the reduction using hydrogen. In this process, the nanocomposite is exposed to a controlled environment containing gaseous hydrogen. At a temperature of 350°C and in time intervals of 10, 15, 20, 25 and 30 minutes, the chemical reduction reaction occurs, in which the hydrogen reacts with the oxides present in the nanocomposite. In addition to the 24/2 nanocomposite synthesis method with 2 gas, it is possible to obtain it with the high-energy milling method. In this way, ground cobalt ferrite is mixed with different concentrations of cobalt iron. Then, the sample is subjected to a ball mill for 1 minute to obtain a uniform mixture and a magnetic coupling between both phases, thus forming the 24/2 nanocomposite. In samples calcined at different temperatures, agglomeration of nanoparticles forms during heating at high temperatures, which contributes to the growth of crystallites and, consequently, to an increase in saturation magnetization. The redistribution of cations, specifically the 3+ ions, in octahedral sites is also responsible for the increase in saturation magnetization. Furthermore, the reduction in the magnetic coercivity of cobalt ferrite with increasing calcination temperature is caused by changes in the microstructure and distribution of cations in the ferrite crystal lattice. .The unground sample has the following characteristics: magnetic coercivity () of 0.4 KOe, magnetic saturation of 75 emu/g, remanence rate ⁄ of 0.38 and maximum magnetic energy () of 2.0 3 ⁄ . After grinding, there was a considerable increase in almost all attributes, which became = 3.7 kOe, = 66 emu/g, ⁄ = 0.56, and () = 9.6 3 ⁄ . The results indicate that this increase is related to the addition of stress and the density of microstructural defects. An increase in magnetic anisotropy is also observed with milling, which is attributed to anisotropic stress. Thus, it is concluded that ultrafast grinding brings several advantages over conventional grinding, especially in terms of efficiency, where you have a tenfold reduction in grinding time and a considerable increase in magnetic properties. Heat treatment in a hydrogen atmosphere is effective in transforming cobalt ferrite into cobalt iron. This process is fast and efficient, reducing cobalt ferrite by approximately 90% in just 20 minutes. Additionally, heat treatment increases the saturation magnetization of cobalt ferrite, making it more magnetic. On the other hand, the magnetic coercivity of cobalt ferrite decreases when reduced in iron-cobalt, which is expected since iron-cobalt is magnetically soft. The method of producing 24/2 nanocomposite through high-energy ball mill has several advantages. The high efficiency and speed of the process stands out, which is 60 times faster compared to other techniques.Neste estudo, será realizado o processo de preparação dos nanocompósitos de 24/2, seguido de uma análise minuciosa da sua estrutura interna. Além disso, serão investigadas as propriedades magnéticas visando a otimização dessas características nas amostras. A síntese da 24 foi realizada por meio do método de gel-combustão e a substância foi submetida a diferentes temperaturas de calcinação, por um período de 2 horas, em condições atmosféricas normais. Posteriormente, as amostras foram submetidas a processos de moagem em diferentes períodos de tempo, com o objetivo de induzir um alto nível de microdeformação residual no interior das partículas, visando ao aumento da coercividade. Após a síntese do nanocompósito de ferrita de cobalto, a etapa seguinte é a redução utilizando hidrogênio. Nesse processo, o nanocompósito é exposto a um ambiente controlado contendo hidrogênio gasoso. A uma temperatura de 350°C e em intervalos de tempo de 10, 15, 20, 25 e 30 minutos, ocorre a reação química de redução, na qual o hidrogênio reage com os óxidos presentes no nanocompósito. Além do método de síntese de nanocompósito de 24/2 com gás 2, é possível a sua obtenção com o método de moagem de alta energia. Dessa forma, a ferrita de cobalto moída é misturada com diferentes concentrações de ferro cobalto. Em seguida, a amostra é submetida a um moinho de bolas por 1 minuto para obter uma mistura uniforme e um acoplamento magnético entre ambas as fases, formando assim o nanocompósito de 24/2. Nas amostras calcinadas em diferentes temperaturas ocorre a formação de aglomeração das nanopartículas durante o aquecimento em altas temperaturas, que contribui para o crescimento dos cristalitos e, consequentemente, para o aumento da magnetização de saturação. A redistribuição dos cátions, especificamente os íons 3+, em sítios octaédricos também é responsável pelo aumento da magnetização de saturação. Dessa maneira, a redução na coercividade magnética da ferrita de cobalto com o aumento da temperatura de calcinação é causada por mudanças na microestrutura e na distribuição de cátions na rede cristalina da ferrita. A amostra não moída, apresenta as seguintes características: coercividade magnética ( ) de 0,4 KOe, saturação magnética ( ) de 75 emu/g, taxa de remanência (⁄) de 0,38 e energia magnética máxima () de 2 3 ⁄ . Após a moagem, houve um aumento considerável de quase todos os atributos, os quais passaram a ser = 3,7 kOe, = 66 emu/g, = 0,56 e () = 9,6 3 ⁄ . Os resultados indicam que esse aumento está relacionado a adição de estresse e da densidade de defeitos microestruturais. É observado também, um aumento na anisotropia magnética com a moagem, e isso é atribuído ao estresse anisotrópico. O tratamento térmico em atmosfera de hidrogênio é eficaz para transformar a ferrita de cobalto em ferro cobalto. Esse processo é rápido e eficiente, reduzindo a ferrita de cobalto em aproximadamente 90% em apenas 20 minutos. Por outro lado, a coercividade magnética da ferrita de cobalto diminui quando reduzida em ferro-cobalto, o que é esperado, uma vez que o ferro-cobalto é magneticamente mole. O método de produção do nanocompósito através do moinho de bolas de alta energia apresenta diversas vantagens. Destaca-se a alta eficiência e velocidade do processo, que é 60 vezes mais rápido em comparação com outras técnicas.Universidade Federal de Mato GrossoBrasilInstituto de Física (IF)UFMT CUC - CuiabáPrograma de Pós-Graduação em FísicaChagas, Edson Ferreirahttp://lattes.cnpq.br/1541477768450184Chagas, Edson Ferreira616.069.361-15http://lattes.cnpq.br/1541477768450184Godoy, Maurício531.5369.31-53http://lattes.cnpq.br/0954555306072029616.069.361-15Faria, Jorge Luiz Brito de568.174.601-15http://lattes.cnpq.br/2516125498547643Leite, Gustavo Capistrano Pinto009.765.051-00http://lattes.cnpq.br/5434500691696707Arinos, Natali Félix039.520.041-54http://lattes.cnpq.br/5748294881060392Ferreira, Edson Silva2024-08-05T14:56:07Z2023-11-272024-08-05T14:56:07Z2023-11-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisFERREIRA, Edson Silva. Preparação, análise microestrutural e propriedades magnéticas de nanocompósitos de CoFe2O4/CoFe2. 2023. 100 f. Tese (Doutorado em Física) - Universidade Federal de Mato Grosso, Instituto de Física, Cuiabá, 2023.http://ri.ufmt.br/handle/1/5613porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMTinstname:Universidade Federal de Mato Grosso (UFMT)instacron:UFMT2024-08-07T07:01:44Zoai:localhost:1/5613Repositório InstitucionalPUBhttp://ri.ufmt.br/oai/requestjordanbiblio@gmail.comopendoar:2024-08-07T07:01:44Repositório Institucional da UFMT - Universidade Federal de Mato Grosso (UFMT)false |
dc.title.none.fl_str_mv |
Preparação, análise microestrutural e propriedades magnéticas de nanocompósitos de CoFe2O4/CoFe2 |
title |
Preparação, análise microestrutural e propriedades magnéticas de nanocompósitos de CoFe2O4/CoFe2 |
spellingShingle |
Preparação, análise microestrutural e propriedades magnéticas de nanocompósitos de CoFe2O4/CoFe2 Ferreira, Edson Silva Moagem ultrarrápida Ferrita de cobalto Alta coercividade CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA Ultrafast grinding Cobalt ferrite High coercivity |
title_short |
Preparação, análise microestrutural e propriedades magnéticas de nanocompósitos de CoFe2O4/CoFe2 |
title_full |
Preparação, análise microestrutural e propriedades magnéticas de nanocompósitos de CoFe2O4/CoFe2 |
title_fullStr |
Preparação, análise microestrutural e propriedades magnéticas de nanocompósitos de CoFe2O4/CoFe2 |
title_full_unstemmed |
Preparação, análise microestrutural e propriedades magnéticas de nanocompósitos de CoFe2O4/CoFe2 |
title_sort |
Preparação, análise microestrutural e propriedades magnéticas de nanocompósitos de CoFe2O4/CoFe2 |
author |
Ferreira, Edson Silva |
author_facet |
Ferreira, Edson Silva |
author_role |
author |
dc.contributor.none.fl_str_mv |
Chagas, Edson Ferreira http://lattes.cnpq.br/1541477768450184 Chagas, Edson Ferreira 616.069.361-15 http://lattes.cnpq.br/1541477768450184 Godoy, Maurício 531.5369.31-53 http://lattes.cnpq.br/0954555306072029 616.069.361-15 Faria, Jorge Luiz Brito de 568.174.601-15 http://lattes.cnpq.br/2516125498547643 Leite, Gustavo Capistrano Pinto 009.765.051-00 http://lattes.cnpq.br/5434500691696707 Arinos, Natali Félix 039.520.041-54 http://lattes.cnpq.br/5748294881060392 |
dc.contributor.author.fl_str_mv |
Ferreira, Edson Silva |
dc.subject.por.fl_str_mv |
Moagem ultrarrápida Ferrita de cobalto Alta coercividade CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA Ultrafast grinding Cobalt ferrite High coercivity |
topic |
Moagem ultrarrápida Ferrita de cobalto Alta coercividade CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA Ultrafast grinding Cobalt ferrite High coercivity |
description |
In this study, the preparation process of 24/2 nanocomposites will be carried out, followed by a detailed analysis of their internal structure. In addition, the magnetic properties will be investigated to optimise these characteristics in the samples. The synthesis of 24 was carried out using the gel-combustion method, and the substance was subjected to different calcination temperatures for a period of 2 hours under normal atmospheric conditions. Subsequently, the samples were submitted to milling processes at different periods to induce a high residual micro deformation inside the particles and increase the coercivity. After the synthesis of the cobalt ferrite nanocomposite, the next step is the reduction using hydrogen. In this process, the nanocomposite is exposed to a controlled environment containing gaseous hydrogen. At a temperature of 350°C and in time intervals of 10, 15, 20, 25 and 30 minutes, the chemical reduction reaction occurs, in which the hydrogen reacts with the oxides present in the nanocomposite. In addition to the 24/2 nanocomposite synthesis method with 2 gas, it is possible to obtain it with the high-energy milling method. In this way, ground cobalt ferrite is mixed with different concentrations of cobalt iron. Then, the sample is subjected to a ball mill for 1 minute to obtain a uniform mixture and a magnetic coupling between both phases, thus forming the 24/2 nanocomposite. In samples calcined at different temperatures, agglomeration of nanoparticles forms during heating at high temperatures, which contributes to the growth of crystallites and, consequently, to an increase in saturation magnetization. The redistribution of cations, specifically the 3+ ions, in octahedral sites is also responsible for the increase in saturation magnetization. Furthermore, the reduction in the magnetic coercivity of cobalt ferrite with increasing calcination temperature is caused by changes in the microstructure and distribution of cations in the ferrite crystal lattice. .The unground sample has the following characteristics: magnetic coercivity () of 0.4 KOe, magnetic saturation of 75 emu/g, remanence rate ⁄ of 0.38 and maximum magnetic energy () of 2.0 3 ⁄ . After grinding, there was a considerable increase in almost all attributes, which became = 3.7 kOe, = 66 emu/g, ⁄ = 0.56, and () = 9.6 3 ⁄ . The results indicate that this increase is related to the addition of stress and the density of microstructural defects. An increase in magnetic anisotropy is also observed with milling, which is attributed to anisotropic stress. Thus, it is concluded that ultrafast grinding brings several advantages over conventional grinding, especially in terms of efficiency, where you have a tenfold reduction in grinding time and a considerable increase in magnetic properties. Heat treatment in a hydrogen atmosphere is effective in transforming cobalt ferrite into cobalt iron. This process is fast and efficient, reducing cobalt ferrite by approximately 90% in just 20 minutes. Additionally, heat treatment increases the saturation magnetization of cobalt ferrite, making it more magnetic. On the other hand, the magnetic coercivity of cobalt ferrite decreases when reduced in iron-cobalt, which is expected since iron-cobalt is magnetically soft. The method of producing 24/2 nanocomposite through high-energy ball mill has several advantages. The high efficiency and speed of the process stands out, which is 60 times faster compared to other techniques. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-27 2023-11-06 2024-08-05T14:56:07Z 2024-08-05T14:56:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
FERREIRA, Edson Silva. Preparação, análise microestrutural e propriedades magnéticas de nanocompósitos de CoFe2O4/CoFe2. 2023. 100 f. Tese (Doutorado em Física) - Universidade Federal de Mato Grosso, Instituto de Física, Cuiabá, 2023. http://ri.ufmt.br/handle/1/5613 |
identifier_str_mv |
FERREIRA, Edson Silva. Preparação, análise microestrutural e propriedades magnéticas de nanocompósitos de CoFe2O4/CoFe2. 2023. 100 f. Tese (Doutorado em Física) - Universidade Federal de Mato Grosso, Instituto de Física, Cuiabá, 2023. |
url |
http://ri.ufmt.br/handle/1/5613 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Mato Grosso Brasil Instituto de Física (IF) UFMT CUC - Cuiabá Programa de Pós-Graduação em Física |
publisher.none.fl_str_mv |
Universidade Federal de Mato Grosso Brasil Instituto de Física (IF) UFMT CUC - Cuiabá Programa de Pós-Graduação em Física |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMT instname:Universidade Federal de Mato Grosso (UFMT) instacron:UFMT |
instname_str |
Universidade Federal de Mato Grosso (UFMT) |
instacron_str |
UFMT |
institution |
UFMT |
reponame_str |
Repositório Institucional da UFMT |
collection |
Repositório Institucional da UFMT |
repository.name.fl_str_mv |
Repositório Institucional da UFMT - Universidade Federal de Mato Grosso (UFMT) |
repository.mail.fl_str_mv |
jordanbiblio@gmail.com |
_version_ |
1813550373786353664 |