Supercondutores mesoscópicos via teoria de Ginzburg-Landau
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFMT |
Texto Completo: | http://ri.ufmt.br/handle/1/3557 |
Resumo: | In this thesis, we study the physical properties of superconducting materials such as magnetization, free energy, magnetic susceptibility, vorticity and vortex dynamics, using the time-dependent Ginzburg-Landau equations (TDGL), and the − U method to do the computer simulation in samples of one and two bands. At first, a sample with defects in the edges and the center was submitted to an external magnetic field from which the magnetization, free energy, the phase diagram, and the vortex dynamics were obtained. We can observe the decrease in the critical fields Hc1 and Hc2 with increasing temperature and that the central defect in the material influences the configuration of the vortex functioning as a vortex trapping center. On another occasion, we analyzed the behavior of a superconductor, in which the defects were filled with a superconducting material with Tc greater and submitted to a transport current. We obtained the critical current Jc 1 where we can see its inverse dependence with the increase in temperature, and the beginning of the resistive state with the appearance of a kinematic vortex-antivortex pair (V-Av). We found the resistivity with function of the applied current and its characteristic shape due to the ultra-fast movement of the vortices. We found a drastic decrease in the critical current Jc1, due to the application of an external magnetic field and the appearance of two Abrikosov vortices. Within the two-band formalism (2B-TDGL), we seek to understand how the vortexes behave in a square sample with a central defect. Here we find an interesting result: the configuration of the vortices does not obey Abrikosov’s triangular lattice due to the competition between the bands to maintain their superconducting state. As the defect increased, the sample became more diamagnetic as there was no change in the Hc2 field, where the central defect led to the anchoring of the vortexes. To simulate a situation in which the sample is in contact with other material, that is, the effects of interfacing with ferromagnetic or superconducting material with Tc greater, we use the influence of deGennes b extrapolation length. We observed an unconventional vortex state and a decrease in the Hc1 field, when the interface is ferromagnetic/superconducting and an increase when we have a superconducting/superconducting interface. This decrease/increase is due to contamination at the material boundaries by electrons/Cooper pairs that contribute to the degradation/increase of the superconducting state. |
id |
UFMT_a65f991e234033e8da32212a1954e0f3 |
---|---|
oai_identifier_str |
oai:localhost:1/3557 |
network_acronym_str |
UFMT |
network_name_str |
Repositório Institucional da UFMT |
repository_id_str |
|
spelling |
Supercondutores mesoscópicos via teoria de Ginzburg-LandauSupercondutividadeGinzburg-LandauVórtice-antivórtice cinemáticoEfeitos de interfaceCNPQ::CIENCIAS EXATAS E DA TERRA::FISICASuperconductivityGinzburg-LandauKinematic vortex-antivortexDeGennes extrapolation lengthIn this thesis, we study the physical properties of superconducting materials such as magnetization, free energy, magnetic susceptibility, vorticity and vortex dynamics, using the time-dependent Ginzburg-Landau equations (TDGL), and the − U method to do the computer simulation in samples of one and two bands. At first, a sample with defects in the edges and the center was submitted to an external magnetic field from which the magnetization, free energy, the phase diagram, and the vortex dynamics were obtained. We can observe the decrease in the critical fields Hc1 and Hc2 with increasing temperature and that the central defect in the material influences the configuration of the vortex functioning as a vortex trapping center. On another occasion, we analyzed the behavior of a superconductor, in which the defects were filled with a superconducting material with Tc greater and submitted to a transport current. We obtained the critical current Jc 1 where we can see its inverse dependence with the increase in temperature, and the beginning of the resistive state with the appearance of a kinematic vortex-antivortex pair (V-Av). We found the resistivity with function of the applied current and its characteristic shape due to the ultra-fast movement of the vortices. We found a drastic decrease in the critical current Jc1, due to the application of an external magnetic field and the appearance of two Abrikosov vortices. Within the two-band formalism (2B-TDGL), we seek to understand how the vortexes behave in a square sample with a central defect. Here we find an interesting result: the configuration of the vortices does not obey Abrikosov’s triangular lattice due to the competition between the bands to maintain their superconducting state. As the defect increased, the sample became more diamagnetic as there was no change in the Hc2 field, where the central defect led to the anchoring of the vortexes. To simulate a situation in which the sample is in contact with other material, that is, the effects of interfacing with ferromagnetic or superconducting material with Tc greater, we use the influence of deGennes b extrapolation length. We observed an unconventional vortex state and a decrease in the Hc1 field, when the interface is ferromagnetic/superconducting and an increase when we have a superconducting/superconducting interface. This decrease/increase is due to contamination at the material boundaries by electrons/Cooper pairs that contribute to the degradation/increase of the superconducting state.Nesta tese, estudamos as propriedades físicas em materiais supercondutores tais como magnetização, energia livre, susceptibilidade magnética, vorticidade e a dinâmica de vórtices, utilizando as equações de Ginzburg-Landau dependente do tempo (TDGL), e o método − U para fazer a simulação computacional em amostras de uma e duas bandas. Em um primeiro momento, uma amostra com defeitos nas bordas e no centro, foi submetida a um campo magnético externo de onde obteve-se a magnetização, energia livre, o diagrama de fases e a dinâmica de vórtices. Podemos observar a diminuição dos campos críticos Hc1 e Hc2 com o aumento da temperatura e que o defeito central no material influencia a configuração dos vórtices funcionando como um centro de aprisionamento de vórtices. Em outra ocasião, analisamos o comportamento de um supercondutor, no qual os defeitos foram preenchidos com um material supercondutor com Tc maior e submetido a uma corrente de transporte. Obtivemos a corrente crítica Jc1 onde podemos ver sua dependência inversa com o aumento da temperatura, e o início do estado resistivo com o surgimento de um par vórtice-antivórtice (V-Av) cinemático. Encontramos a resistividade com função da corrente aplica e sua forma característica devido ao movimento ultra-rápido dos vórtices. Constatamos a drástica diminuição da corrente crítica Jc1, devido à aplicação de um campo magnético externo e o surgimento de dois vórtices de Abrikosov. Dentro do formalismo de duas bandas (2B-TDGL), buscamos compreender como se comportam os vórtices em uma amostra quadrada com um defeito central. Aqui encontramos um interessante resultado: a configuração dos vórtices não obedece a rede triangular de Abrikosov devido à competição entre as bandas para manter seu estado supercondutor. Com o aumento do defeito a amostra se tornou mais diamagnética pois não houve alteração do campo Hc2, onde o defeito central levou ao ancoramento dos vórtices. Para simular uma situação em que a amostra está em contato com outro material, ou seja, os efeitos de interface com material ferromagnético ou supercondutor com Tc maior, utilizamos a influência do comprimento de extrapolação de deGennes b. Observamos um estado de vórtice não convencional e a diminuição do campo Hc1, quando a interface é ferromagnético/supercondutor e um aumento quando temos uma interface supercondutor/supercondutor. Essa diminuição/aumento é devido à contaminação nas fronteiras do material por elétrons/pares de Cooper que contribuem para a degradação/aumento do estado supercondutor.Universidade Federal de Mato GrossoBrasilInstituto de Física (IF)UFMT CUC - CuiabáPrograma de Pós-Graduação em FísicaArruda, Alberto Sebastião deOrtega, José José Barbahttp://lattes.cnpq.br/9629796806243889http://lattes.cnpq.br/7710288371318569Arruda, Alberto Sebastião de275.038.011-15http://lattes.cnpq.br/7710288371318569Silva, Antonio dos Anjos Pinheiro da372.407.300-34http://lattes.cnpq.br/2524307937022365275.038.011-15014.339.644-73Tunes, Thiago Miranda000.241.751-02http://lattes.cnpq.br/2765530678924864Zebende, Gilney Figueira022.396.277-51http://lattes.cnpq.br/2464685002862801Sousa, José Ricardo de476.039.094-49http://lattes.cnpq.br/3871066069541626Godoy, Maurício531.5369.31-53http://lattes.cnpq.br/0954555306072029Jorge, Thiago Nunes2022-10-31T17:46:48Z2021-01-262022-10-31T17:46:48Z2020-10-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisJORGE, Thiago Nunes. Supercondutores mesoscópicos via teoria de Ginzburg-Landau. 2020. 102 f. Tese (Doutorado em Física) - Universidade Federal de Mato Grosso, Instituto de Física, Cuiabá, 2020.http://ri.ufmt.br/handle/1/3557porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMTinstname:Universidade Federal de Mato Grosso (UFMT)instacron:UFMT2022-11-04T07:02:59Zoai:localhost:1/3557Repositório InstitucionalPUBhttp://ri.ufmt.br/oai/requestjordanbiblio@gmail.comopendoar:2022-11-04T07:02:59Repositório Institucional da UFMT - Universidade Federal de Mato Grosso (UFMT)false |
dc.title.none.fl_str_mv |
Supercondutores mesoscópicos via teoria de Ginzburg-Landau |
title |
Supercondutores mesoscópicos via teoria de Ginzburg-Landau |
spellingShingle |
Supercondutores mesoscópicos via teoria de Ginzburg-Landau Jorge, Thiago Nunes Supercondutividade Ginzburg-Landau Vórtice-antivórtice cinemático Efeitos de interface CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA Superconductivity Ginzburg-Landau Kinematic vortex-antivortex DeGennes extrapolation length |
title_short |
Supercondutores mesoscópicos via teoria de Ginzburg-Landau |
title_full |
Supercondutores mesoscópicos via teoria de Ginzburg-Landau |
title_fullStr |
Supercondutores mesoscópicos via teoria de Ginzburg-Landau |
title_full_unstemmed |
Supercondutores mesoscópicos via teoria de Ginzburg-Landau |
title_sort |
Supercondutores mesoscópicos via teoria de Ginzburg-Landau |
author |
Jorge, Thiago Nunes |
author_facet |
Jorge, Thiago Nunes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Arruda, Alberto Sebastião de Ortega, José José Barba http://lattes.cnpq.br/9629796806243889 http://lattes.cnpq.br/7710288371318569 Arruda, Alberto Sebastião de 275.038.011-15 http://lattes.cnpq.br/7710288371318569 Silva, Antonio dos Anjos Pinheiro da 372.407.300-34 http://lattes.cnpq.br/2524307937022365 275.038.011-15 014.339.644-73 Tunes, Thiago Miranda 000.241.751-02 http://lattes.cnpq.br/2765530678924864 Zebende, Gilney Figueira 022.396.277-51 http://lattes.cnpq.br/2464685002862801 Sousa, José Ricardo de 476.039.094-49 http://lattes.cnpq.br/3871066069541626 Godoy, Maurício 531.5369.31-53 http://lattes.cnpq.br/0954555306072029 |
dc.contributor.author.fl_str_mv |
Jorge, Thiago Nunes |
dc.subject.por.fl_str_mv |
Supercondutividade Ginzburg-Landau Vórtice-antivórtice cinemático Efeitos de interface CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA Superconductivity Ginzburg-Landau Kinematic vortex-antivortex DeGennes extrapolation length |
topic |
Supercondutividade Ginzburg-Landau Vórtice-antivórtice cinemático Efeitos de interface CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA Superconductivity Ginzburg-Landau Kinematic vortex-antivortex DeGennes extrapolation length |
description |
In this thesis, we study the physical properties of superconducting materials such as magnetization, free energy, magnetic susceptibility, vorticity and vortex dynamics, using the time-dependent Ginzburg-Landau equations (TDGL), and the − U method to do the computer simulation in samples of one and two bands. At first, a sample with defects in the edges and the center was submitted to an external magnetic field from which the magnetization, free energy, the phase diagram, and the vortex dynamics were obtained. We can observe the decrease in the critical fields Hc1 and Hc2 with increasing temperature and that the central defect in the material influences the configuration of the vortex functioning as a vortex trapping center. On another occasion, we analyzed the behavior of a superconductor, in which the defects were filled with a superconducting material with Tc greater and submitted to a transport current. We obtained the critical current Jc 1 where we can see its inverse dependence with the increase in temperature, and the beginning of the resistive state with the appearance of a kinematic vortex-antivortex pair (V-Av). We found the resistivity with function of the applied current and its characteristic shape due to the ultra-fast movement of the vortices. We found a drastic decrease in the critical current Jc1, due to the application of an external magnetic field and the appearance of two Abrikosov vortices. Within the two-band formalism (2B-TDGL), we seek to understand how the vortexes behave in a square sample with a central defect. Here we find an interesting result: the configuration of the vortices does not obey Abrikosov’s triangular lattice due to the competition between the bands to maintain their superconducting state. As the defect increased, the sample became more diamagnetic as there was no change in the Hc2 field, where the central defect led to the anchoring of the vortexes. To simulate a situation in which the sample is in contact with other material, that is, the effects of interfacing with ferromagnetic or superconducting material with Tc greater, we use the influence of deGennes b extrapolation length. We observed an unconventional vortex state and a decrease in the Hc1 field, when the interface is ferromagnetic/superconducting and an increase when we have a superconducting/superconducting interface. This decrease/increase is due to contamination at the material boundaries by electrons/Cooper pairs that contribute to the degradation/increase of the superconducting state. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10-27 2021-01-26 2022-10-31T17:46:48Z 2022-10-31T17:46:48Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
JORGE, Thiago Nunes. Supercondutores mesoscópicos via teoria de Ginzburg-Landau. 2020. 102 f. Tese (Doutorado em Física) - Universidade Federal de Mato Grosso, Instituto de Física, Cuiabá, 2020. http://ri.ufmt.br/handle/1/3557 |
identifier_str_mv |
JORGE, Thiago Nunes. Supercondutores mesoscópicos via teoria de Ginzburg-Landau. 2020. 102 f. Tese (Doutorado em Física) - Universidade Federal de Mato Grosso, Instituto de Física, Cuiabá, 2020. |
url |
http://ri.ufmt.br/handle/1/3557 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Mato Grosso Brasil Instituto de Física (IF) UFMT CUC - Cuiabá Programa de Pós-Graduação em Física |
publisher.none.fl_str_mv |
Universidade Federal de Mato Grosso Brasil Instituto de Física (IF) UFMT CUC - Cuiabá Programa de Pós-Graduação em Física |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMT instname:Universidade Federal de Mato Grosso (UFMT) instacron:UFMT |
instname_str |
Universidade Federal de Mato Grosso (UFMT) |
instacron_str |
UFMT |
institution |
UFMT |
reponame_str |
Repositório Institucional da UFMT |
collection |
Repositório Institucional da UFMT |
repository.name.fl_str_mv |
Repositório Institucional da UFMT - Universidade Federal de Mato Grosso (UFMT) |
repository.mail.fl_str_mv |
jordanbiblio@gmail.com |
_version_ |
1804648514080210944 |