A new item response theory model to adjust data allowing examinee choice.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFOP |
Texto Completo: | http://www.repositorio.ufop.br/handle/123456789/10440 |
Resumo: | In a typical questionnaire testing situation, examinees are not allowed to choose which items they answer because of a technical issue in obtaining satisfactory statistical estimates of examinee ability and item difficulty. This paper introduces a new item response theory (IRT) model that incorporates information from a novel representation of questionnaire data using network analysis. Three scenarios in which examinees select a subset of items were simulated. In the first scenario, the assumptions required to apply the standard Rasch model are met, thus establishing a reference for parameter accuracy. The second and third scenarios include five increasing levels of violating those assumptions. The results show substantial improvements over the standard model in item parameter recovery. Furthermore, the accuracy was closer to the reference in almost every evaluated scenario. To the best of our knowledge, this is the first proposal to obtain satisfactory IRT statistical estimates in the last two scenarios. |
id |
UFOP_152f62f94291454a763b42037cf5708e |
---|---|
oai_identifier_str |
oai:repositorio.ufop.br:123456789/10440 |
network_acronym_str |
UFOP |
network_name_str |
Repositório Institucional da UFOP |
repository_id_str |
3233 |
spelling |
A new item response theory model to adjust data allowing examinee choice.In a typical questionnaire testing situation, examinees are not allowed to choose which items they answer because of a technical issue in obtaining satisfactory statistical estimates of examinee ability and item difficulty. This paper introduces a new item response theory (IRT) model that incorporates information from a novel representation of questionnaire data using network analysis. Three scenarios in which examinees select a subset of items were simulated. In the first scenario, the assumptions required to apply the standard Rasch model are met, thus establishing a reference for parameter accuracy. The second and third scenarios include five increasing levels of violating those assumptions. The results show substantial improvements over the standard model in item parameter recovery. Furthermore, the accuracy was closer to the reference in almost every evaluated scenario. To the best of our knowledge, this is the first proposal to obtain satisfactory IRT statistical estimates in the last two scenarios.2018-10-24T14:58:35Z2018-10-24T14:58:35Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfPENA, C. S.; COSTA, M. A.; OLIVEIRA, R. P. B. A new item response theory model to adjust data allowing examinee choice. PLoS One, v. 13, n. 2, p. 1-23, fev. 2018. Disponível em: <http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191600>. Acesso em: 16 jun. 2018.19326203http://www.repositorio.ufop.br/handle/123456789/10440This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Fonte: o próprio artigo.info:eu-repo/semantics/openAccessPena, Carolina SilvaCosta, Marcelo AzevedoOliveira, Rívert Paulo Bragaengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2018-10-24T14:58:35Zoai:repositorio.ufop.br:123456789/10440Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332018-10-24T14:58:35Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false |
dc.title.none.fl_str_mv |
A new item response theory model to adjust data allowing examinee choice. |
title |
A new item response theory model to adjust data allowing examinee choice. |
spellingShingle |
A new item response theory model to adjust data allowing examinee choice. Pena, Carolina Silva |
title_short |
A new item response theory model to adjust data allowing examinee choice. |
title_full |
A new item response theory model to adjust data allowing examinee choice. |
title_fullStr |
A new item response theory model to adjust data allowing examinee choice. |
title_full_unstemmed |
A new item response theory model to adjust data allowing examinee choice. |
title_sort |
A new item response theory model to adjust data allowing examinee choice. |
author |
Pena, Carolina Silva |
author_facet |
Pena, Carolina Silva Costa, Marcelo Azevedo Oliveira, Rívert Paulo Braga |
author_role |
author |
author2 |
Costa, Marcelo Azevedo Oliveira, Rívert Paulo Braga |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Pena, Carolina Silva Costa, Marcelo Azevedo Oliveira, Rívert Paulo Braga |
description |
In a typical questionnaire testing situation, examinees are not allowed to choose which items they answer because of a technical issue in obtaining satisfactory statistical estimates of examinee ability and item difficulty. This paper introduces a new item response theory (IRT) model that incorporates information from a novel representation of questionnaire data using network analysis. Three scenarios in which examinees select a subset of items were simulated. In the first scenario, the assumptions required to apply the standard Rasch model are met, thus establishing a reference for parameter accuracy. The second and third scenarios include five increasing levels of violating those assumptions. The results show substantial improvements over the standard model in item parameter recovery. Furthermore, the accuracy was closer to the reference in almost every evaluated scenario. To the best of our knowledge, this is the first proposal to obtain satisfactory IRT statistical estimates in the last two scenarios. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-10-24T14:58:35Z 2018-10-24T14:58:35Z 2018 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
PENA, C. S.; COSTA, M. A.; OLIVEIRA, R. P. B. A new item response theory model to adjust data allowing examinee choice. PLoS One, v. 13, n. 2, p. 1-23, fev. 2018. Disponível em: <http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191600>. Acesso em: 16 jun. 2018. 19326203 http://www.repositorio.ufop.br/handle/123456789/10440 |
identifier_str_mv |
PENA, C. S.; COSTA, M. A.; OLIVEIRA, R. P. B. A new item response theory model to adjust data allowing examinee choice. PLoS One, v. 13, n. 2, p. 1-23, fev. 2018. Disponível em: <http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191600>. Acesso em: 16 jun. 2018. 19326203 |
url |
http://www.repositorio.ufop.br/handle/123456789/10440 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFOP instname:Universidade Federal de Ouro Preto (UFOP) instacron:UFOP |
instname_str |
Universidade Federal de Ouro Preto (UFOP) |
instacron_str |
UFOP |
institution |
UFOP |
reponame_str |
Repositório Institucional da UFOP |
collection |
Repositório Institucional da UFOP |
repository.name.fl_str_mv |
Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP) |
repository.mail.fl_str_mv |
repositorio@ufop.edu.br |
_version_ |
1813002807726309376 |