Production of a non-stoichiometric Nb-Ti HSLA steel by thermomechanical processing on a Steckel mill.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFOP |
Texto Completo: | http://www.repositorio.ufop.br/jspui/handle/123456789/16918 https://doi.org/10.3390/met13020405 |
Resumo: | Obtaining high levels of mechanical properties in steels is directly linked to the use of special mechanical forming processes and the addition of alloying elements during their manufacture. This work presents a study of a hot-rolled steel strip produced to achieve a yield strength above 600 MPa, using a niobium microalloyed HSLA steel with non-stoichiometric titanium (titanium/nitrogen ratio above 3.42), and rolled on a Steckel mill. A major challenge imposed by rolling on a Steckel mill is that the process is reversible, resulting in long interpass times, which facilitates recrystallization and grain growth kinetics. Rolling parameters whose aim was to obtain the maximum degree of microstructural refinement were determined by considering microstructural evolution simulations performed in MicroSim-SM® software and studying the alloy through physical simulations to obtain critical temperatures and determine the CCT diagram. Four ranges of coiling temperatures (525–550 ◦C/550–600 ◦C/600–650 ◦ C/650–700 ◦C) were applied to evaluate their impact on microstructure, precipitation hardening, and mechanical properties, with the results showing a very refined microstructure, with the highest yield strength observed at coiling temperatures of 600–650 ◦C. This scenario is explained by the maximum precipitation of titanium carbide observed at this temperature, leading to a greater contribution of precipitation hardening provided by the presence of a large volume of small-sized precipitates. This paper shows that the combination of optimized industrial parameters based on metallurgical mechanisms and advanced modeling techniques opens up new possibilities for a robust production of high-strength steels using a Steckel mill. The microstructural base for a stable production of high-strength hot-rolled products relies on a consistent grain size refinement provided mainly by the effect of Nb together with appropriate rolling parameters, and the fine precipitation of TiC during cooling provides the additional increase to reach the requested yield strength values. |
id |
UFOP_183034b3639c1dd0d57cdc81f7e96159 |
---|---|
oai_identifier_str |
oai:repositorio.ufop.br:123456789/16918 |
network_acronym_str |
UFOP |
network_name_str |
Repositório Institucional da UFOP |
repository_id_str |
3233 |
spelling |
Production of a non-stoichiometric Nb-Ti HSLA steel by thermomechanical processing on a Steckel mill.Controlled rollingThermomechanical processingAccelerated coolingHigh-strength low-alloy steelsNb precipitationObtaining high levels of mechanical properties in steels is directly linked to the use of special mechanical forming processes and the addition of alloying elements during their manufacture. This work presents a study of a hot-rolled steel strip produced to achieve a yield strength above 600 MPa, using a niobium microalloyed HSLA steel with non-stoichiometric titanium (titanium/nitrogen ratio above 3.42), and rolled on a Steckel mill. A major challenge imposed by rolling on a Steckel mill is that the process is reversible, resulting in long interpass times, which facilitates recrystallization and grain growth kinetics. Rolling parameters whose aim was to obtain the maximum degree of microstructural refinement were determined by considering microstructural evolution simulations performed in MicroSim-SM® software and studying the alloy through physical simulations to obtain critical temperatures and determine the CCT diagram. Four ranges of coiling temperatures (525–550 ◦C/550–600 ◦C/600–650 ◦ C/650–700 ◦C) were applied to evaluate their impact on microstructure, precipitation hardening, and mechanical properties, with the results showing a very refined microstructure, with the highest yield strength observed at coiling temperatures of 600–650 ◦C. This scenario is explained by the maximum precipitation of titanium carbide observed at this temperature, leading to a greater contribution of precipitation hardening provided by the presence of a large volume of small-sized precipitates. This paper shows that the combination of optimized industrial parameters based on metallurgical mechanisms and advanced modeling techniques opens up new possibilities for a robust production of high-strength steels using a Steckel mill. The microstructural base for a stable production of high-strength hot-rolled products relies on a consistent grain size refinement provided mainly by the effect of Nb together with appropriate rolling parameters, and the fine precipitation of TiC during cooling provides the additional increase to reach the requested yield strength values.2023-07-10T18:52:54Z2023-07-10T18:52:54Z2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfMARTINS, C. A. et al. Production of a non-stoichiometric Nb-Ti HSLA steel by thermomechanical processing on a Steckel mill. Metals, v. 13, n. 2, artigo 405, fev. 2023. Disponível em: <https://www.mdpi.com/2075-4701/13/2/405>. Acesso em: 15 mar. 2023.2075-4701http://www.repositorio.ufop.br/jspui/handle/123456789/16918https://doi.org/10.3390/met13020405This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Fonte: PDF do artigo.info:eu-repo/semantics/openAccessMartins, Cleiton ArlindoFaria, Geraldo Lúcio deMayo, UnaiIsasti, NereaUranga, PelloRodríguez Ibabe, Jose MariaSouza, Altair Lúcio deCohn, Jorge Adam CletoRebellato, Marcelo ArantesGorni, Antônio Augustoengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2023-07-10T18:53:04Zoai:repositorio.ufop.br:123456789/16918Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332023-07-10T18:53:04Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false |
dc.title.none.fl_str_mv |
Production of a non-stoichiometric Nb-Ti HSLA steel by thermomechanical processing on a Steckel mill. |
title |
Production of a non-stoichiometric Nb-Ti HSLA steel by thermomechanical processing on a Steckel mill. |
spellingShingle |
Production of a non-stoichiometric Nb-Ti HSLA steel by thermomechanical processing on a Steckel mill. Martins, Cleiton Arlindo Controlled rolling Thermomechanical processing Accelerated cooling High-strength low-alloy steels Nb precipitation |
title_short |
Production of a non-stoichiometric Nb-Ti HSLA steel by thermomechanical processing on a Steckel mill. |
title_full |
Production of a non-stoichiometric Nb-Ti HSLA steel by thermomechanical processing on a Steckel mill. |
title_fullStr |
Production of a non-stoichiometric Nb-Ti HSLA steel by thermomechanical processing on a Steckel mill. |
title_full_unstemmed |
Production of a non-stoichiometric Nb-Ti HSLA steel by thermomechanical processing on a Steckel mill. |
title_sort |
Production of a non-stoichiometric Nb-Ti HSLA steel by thermomechanical processing on a Steckel mill. |
author |
Martins, Cleiton Arlindo |
author_facet |
Martins, Cleiton Arlindo Faria, Geraldo Lúcio de Mayo, Unai Isasti, Nerea Uranga, Pello Rodríguez Ibabe, Jose Maria Souza, Altair Lúcio de Cohn, Jorge Adam Cleto Rebellato, Marcelo Arantes Gorni, Antônio Augusto |
author_role |
author |
author2 |
Faria, Geraldo Lúcio de Mayo, Unai Isasti, Nerea Uranga, Pello Rodríguez Ibabe, Jose Maria Souza, Altair Lúcio de Cohn, Jorge Adam Cleto Rebellato, Marcelo Arantes Gorni, Antônio Augusto |
author2_role |
author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Martins, Cleiton Arlindo Faria, Geraldo Lúcio de Mayo, Unai Isasti, Nerea Uranga, Pello Rodríguez Ibabe, Jose Maria Souza, Altair Lúcio de Cohn, Jorge Adam Cleto Rebellato, Marcelo Arantes Gorni, Antônio Augusto |
dc.subject.por.fl_str_mv |
Controlled rolling Thermomechanical processing Accelerated cooling High-strength low-alloy steels Nb precipitation |
topic |
Controlled rolling Thermomechanical processing Accelerated cooling High-strength low-alloy steels Nb precipitation |
description |
Obtaining high levels of mechanical properties in steels is directly linked to the use of special mechanical forming processes and the addition of alloying elements during their manufacture. This work presents a study of a hot-rolled steel strip produced to achieve a yield strength above 600 MPa, using a niobium microalloyed HSLA steel with non-stoichiometric titanium (titanium/nitrogen ratio above 3.42), and rolled on a Steckel mill. A major challenge imposed by rolling on a Steckel mill is that the process is reversible, resulting in long interpass times, which facilitates recrystallization and grain growth kinetics. Rolling parameters whose aim was to obtain the maximum degree of microstructural refinement were determined by considering microstructural evolution simulations performed in MicroSim-SM® software and studying the alloy through physical simulations to obtain critical temperatures and determine the CCT diagram. Four ranges of coiling temperatures (525–550 ◦C/550–600 ◦C/600–650 ◦ C/650–700 ◦C) were applied to evaluate their impact on microstructure, precipitation hardening, and mechanical properties, with the results showing a very refined microstructure, with the highest yield strength observed at coiling temperatures of 600–650 ◦C. This scenario is explained by the maximum precipitation of titanium carbide observed at this temperature, leading to a greater contribution of precipitation hardening provided by the presence of a large volume of small-sized precipitates. This paper shows that the combination of optimized industrial parameters based on metallurgical mechanisms and advanced modeling techniques opens up new possibilities for a robust production of high-strength steels using a Steckel mill. The microstructural base for a stable production of high-strength hot-rolled products relies on a consistent grain size refinement provided mainly by the effect of Nb together with appropriate rolling parameters, and the fine precipitation of TiC during cooling provides the additional increase to reach the requested yield strength values. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-10T18:52:54Z 2023-07-10T18:52:54Z 2023 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
MARTINS, C. A. et al. Production of a non-stoichiometric Nb-Ti HSLA steel by thermomechanical processing on a Steckel mill. Metals, v. 13, n. 2, artigo 405, fev. 2023. Disponível em: <https://www.mdpi.com/2075-4701/13/2/405>. Acesso em: 15 mar. 2023. 2075-4701 http://www.repositorio.ufop.br/jspui/handle/123456789/16918 https://doi.org/10.3390/met13020405 |
identifier_str_mv |
MARTINS, C. A. et al. Production of a non-stoichiometric Nb-Ti HSLA steel by thermomechanical processing on a Steckel mill. Metals, v. 13, n. 2, artigo 405, fev. 2023. Disponível em: <https://www.mdpi.com/2075-4701/13/2/405>. Acesso em: 15 mar. 2023. 2075-4701 |
url |
http://www.repositorio.ufop.br/jspui/handle/123456789/16918 https://doi.org/10.3390/met13020405 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFOP instname:Universidade Federal de Ouro Preto (UFOP) instacron:UFOP |
instname_str |
Universidade Federal de Ouro Preto (UFOP) |
instacron_str |
UFOP |
institution |
UFOP |
reponame_str |
Repositório Institucional da UFOP |
collection |
Repositório Institucional da UFOP |
repository.name.fl_str_mv |
Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP) |
repository.mail.fl_str_mv |
repositorio@ufop.edu.br |
_version_ |
1813002857227485184 |