Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method.

Detalhes bibliográficos
Autor(a) principal: Campos, Magno Silvério
Data de Publicação: 2022
Outros Autores: Costa, Marcelo Azevedo, Gontijo, Tiago Silveira, Lopes-Ahn, Ana Lúcia
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFOP
Texto Completo: http://www.repositorio.ufop.br/jspui/handle/123456789/16859
https://doi.org/10.1016/j.dajour.2022.100051
Resumo: A Data Envelopment Analysis (DEA) method has been applied by the Brazilian regulator to set regulatory operational costs for 61 electricity distribution utilities. Recent studies show evidence that the current method still requires improvements. This study evaluates the use of Stochastic Frontier Analysis (SFA) as an alternative method. Pros and cons are evaluated. Results show that the SFA is more flexible to deal with outliers. However, the SFA has major convergence problems. Convergence issues can be overcome using Bayesian computations. This study advocates the use of both DEA and SFA as the best alternatives, as indicated by European regulators.
id UFOP_2d6c1d683db5bb929408c99e7838ddcb
oai_identifier_str oai:repositorio.ufop.br:123456789/16859
network_acronym_str UFOP
network_name_str Repositório Institucional da UFOP
repository_id_str 3233
spelling Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method.Data envelopment analysisStochastic frontier analysisBayesian statisticA Data Envelopment Analysis (DEA) method has been applied by the Brazilian regulator to set regulatory operational costs for 61 electricity distribution utilities. Recent studies show evidence that the current method still requires improvements. This study evaluates the use of Stochastic Frontier Analysis (SFA) as an alternative method. Pros and cons are evaluated. Results show that the SFA is more flexible to deal with outliers. However, the SFA has major convergence problems. Convergence issues can be overcome using Bayesian computations. This study advocates the use of both DEA and SFA as the best alternatives, as indicated by European regulators.2023-07-03T19:24:37Z2023-07-03T19:24:37Z2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfCAMPOS, M. S. et. al. Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method. Decision Analytics Journal, v. 3, artigo 100051, abr. 2022. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2772662222000169>. Acesso em: 03 maio 2023.2772-6622http://www.repositorio.ufop.br/jspui/handle/123456789/16859https://doi.org/10.1016/j.dajour.2022.100051This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Fonte: PDF do artigo.info:eu-repo/semantics/openAccessCampos, Magno SilvérioCosta, Marcelo AzevedoGontijo, Tiago SilveiraLopes-Ahn, Ana Lúciaengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2023-07-03T19:24:47Zoai:repositorio.ufop.br:123456789/16859Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332023-07-03T19:24:47Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false
dc.title.none.fl_str_mv Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method.
title Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method.
spellingShingle Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method.
Campos, Magno Silvério
Data envelopment analysis
Stochastic frontier analysis
Bayesian statistic
title_short Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method.
title_full Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method.
title_fullStr Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method.
title_full_unstemmed Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method.
title_sort Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method.
author Campos, Magno Silvério
author_facet Campos, Magno Silvério
Costa, Marcelo Azevedo
Gontijo, Tiago Silveira
Lopes-Ahn, Ana Lúcia
author_role author
author2 Costa, Marcelo Azevedo
Gontijo, Tiago Silveira
Lopes-Ahn, Ana Lúcia
author2_role author
author
author
dc.contributor.author.fl_str_mv Campos, Magno Silvério
Costa, Marcelo Azevedo
Gontijo, Tiago Silveira
Lopes-Ahn, Ana Lúcia
dc.subject.por.fl_str_mv Data envelopment analysis
Stochastic frontier analysis
Bayesian statistic
topic Data envelopment analysis
Stochastic frontier analysis
Bayesian statistic
description A Data Envelopment Analysis (DEA) method has been applied by the Brazilian regulator to set regulatory operational costs for 61 electricity distribution utilities. Recent studies show evidence that the current method still requires improvements. This study evaluates the use of Stochastic Frontier Analysis (SFA) as an alternative method. Pros and cons are evaluated. Results show that the SFA is more flexible to deal with outliers. However, the SFA has major convergence problems. Convergence issues can be overcome using Bayesian computations. This study advocates the use of both DEA and SFA as the best alternatives, as indicated by European regulators.
publishDate 2022
dc.date.none.fl_str_mv 2022
2023-07-03T19:24:37Z
2023-07-03T19:24:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv CAMPOS, M. S. et. al. Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method. Decision Analytics Journal, v. 3, artigo 100051, abr. 2022. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2772662222000169>. Acesso em: 03 maio 2023.
2772-6622
http://www.repositorio.ufop.br/jspui/handle/123456789/16859
https://doi.org/10.1016/j.dajour.2022.100051
identifier_str_mv CAMPOS, M. S. et. al. Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method. Decision Analytics Journal, v. 3, artigo 100051, abr. 2022. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2772662222000169>. Acesso em: 03 maio 2023.
2772-6622
url http://www.repositorio.ufop.br/jspui/handle/123456789/16859
https://doi.org/10.1016/j.dajour.2022.100051
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFOP
instname:Universidade Federal de Ouro Preto (UFOP)
instacron:UFOP
instname_str Universidade Federal de Ouro Preto (UFOP)
instacron_str UFOP
institution UFOP
reponame_str Repositório Institucional da UFOP
collection Repositório Institucional da UFOP
repository.name.fl_str_mv Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)
repository.mail.fl_str_mv repositorio@ufop.edu.br
_version_ 1813002835021791232