Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFOP |
Texto Completo: | http://www.repositorio.ufop.br/jspui/handle/123456789/16859 https://doi.org/10.1016/j.dajour.2022.100051 |
Resumo: | A Data Envelopment Analysis (DEA) method has been applied by the Brazilian regulator to set regulatory operational costs for 61 electricity distribution utilities. Recent studies show evidence that the current method still requires improvements. This study evaluates the use of Stochastic Frontier Analysis (SFA) as an alternative method. Pros and cons are evaluated. Results show that the SFA is more flexible to deal with outliers. However, the SFA has major convergence problems. Convergence issues can be overcome using Bayesian computations. This study advocates the use of both DEA and SFA as the best alternatives, as indicated by European regulators. |
id |
UFOP_2d6c1d683db5bb929408c99e7838ddcb |
---|---|
oai_identifier_str |
oai:repositorio.ufop.br:123456789/16859 |
network_acronym_str |
UFOP |
network_name_str |
Repositório Institucional da UFOP |
repository_id_str |
3233 |
spelling |
Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method.Data envelopment analysisStochastic frontier analysisBayesian statisticA Data Envelopment Analysis (DEA) method has been applied by the Brazilian regulator to set regulatory operational costs for 61 electricity distribution utilities. Recent studies show evidence that the current method still requires improvements. This study evaluates the use of Stochastic Frontier Analysis (SFA) as an alternative method. Pros and cons are evaluated. Results show that the SFA is more flexible to deal with outliers. However, the SFA has major convergence problems. Convergence issues can be overcome using Bayesian computations. This study advocates the use of both DEA and SFA as the best alternatives, as indicated by European regulators.2023-07-03T19:24:37Z2023-07-03T19:24:37Z2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfCAMPOS, M. S. et. al. Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method. Decision Analytics Journal, v. 3, artigo 100051, abr. 2022. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2772662222000169>. Acesso em: 03 maio 2023.2772-6622http://www.repositorio.ufop.br/jspui/handle/123456789/16859https://doi.org/10.1016/j.dajour.2022.100051This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Fonte: PDF do artigo.info:eu-repo/semantics/openAccessCampos, Magno SilvérioCosta, Marcelo AzevedoGontijo, Tiago SilveiraLopes-Ahn, Ana Lúciaengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2023-07-03T19:24:47Zoai:repositorio.ufop.br:123456789/16859Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332023-07-03T19:24:47Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false |
dc.title.none.fl_str_mv |
Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method. |
title |
Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method. |
spellingShingle |
Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method. Campos, Magno Silvério Data envelopment analysis Stochastic frontier analysis Bayesian statistic |
title_short |
Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method. |
title_full |
Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method. |
title_fullStr |
Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method. |
title_full_unstemmed |
Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method. |
title_sort |
Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method. |
author |
Campos, Magno Silvério |
author_facet |
Campos, Magno Silvério Costa, Marcelo Azevedo Gontijo, Tiago Silveira Lopes-Ahn, Ana Lúcia |
author_role |
author |
author2 |
Costa, Marcelo Azevedo Gontijo, Tiago Silveira Lopes-Ahn, Ana Lúcia |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Campos, Magno Silvério Costa, Marcelo Azevedo Gontijo, Tiago Silveira Lopes-Ahn, Ana Lúcia |
dc.subject.por.fl_str_mv |
Data envelopment analysis Stochastic frontier analysis Bayesian statistic |
topic |
Data envelopment analysis Stochastic frontier analysis Bayesian statistic |
description |
A Data Envelopment Analysis (DEA) method has been applied by the Brazilian regulator to set regulatory operational costs for 61 electricity distribution utilities. Recent studies show evidence that the current method still requires improvements. This study evaluates the use of Stochastic Frontier Analysis (SFA) as an alternative method. Pros and cons are evaluated. Results show that the SFA is more flexible to deal with outliers. However, the SFA has major convergence problems. Convergence issues can be overcome using Bayesian computations. This study advocates the use of both DEA and SFA as the best alternatives, as indicated by European regulators. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2023-07-03T19:24:37Z 2023-07-03T19:24:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
CAMPOS, M. S. et. al. Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method. Decision Analytics Journal, v. 3, artigo 100051, abr. 2022. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2772662222000169>. Acesso em: 03 maio 2023. 2772-6622 http://www.repositorio.ufop.br/jspui/handle/123456789/16859 https://doi.org/10.1016/j.dajour.2022.100051 |
identifier_str_mv |
CAMPOS, M. S. et. al. Robust stochastic frontier analysis applied to the Brazilian electricity distribution benchmarking method. Decision Analytics Journal, v. 3, artigo 100051, abr. 2022. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2772662222000169>. Acesso em: 03 maio 2023. 2772-6622 |
url |
http://www.repositorio.ufop.br/jspui/handle/123456789/16859 https://doi.org/10.1016/j.dajour.2022.100051 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFOP instname:Universidade Federal de Ouro Preto (UFOP) instacron:UFOP |
instname_str |
Universidade Federal de Ouro Preto (UFOP) |
instacron_str |
UFOP |
institution |
UFOP |
reponame_str |
Repositório Institucional da UFOP |
collection |
Repositório Institucional da UFOP |
repository.name.fl_str_mv |
Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP) |
repository.mail.fl_str_mv |
repositorio@ufop.edu.br |
_version_ |
1813002835021791232 |