Fast detection of arbitrarily shaped disease clusters.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFOP |
Texto Completo: | http://www.repositorio.ufop.br/handle/123456789/1766 |
Resumo: | Disease cluster detection and evaluation have commonly used spatial statistics methods that scan the map with a fixed circular window to locate candidate clusters. Recently, there has been interest in searching for clusters with arbitrary shape. The circular scan test retains high power of detecting a cluster, but does not necessarily identify the exact regions contained in a non-circular cluster particularly well. We propose, implement and evaluate a new procedure that is fast and produces clusters estimates of arbitrary shape in a rich class of possible cluster candidates. We showed that our methods contain the so-called upper level set method as a particular case. We present a power study of our method and, among other results, the main conclusion is that the likelihood-based arbitrarily shaped scan method is not appropriate to _nd a cluster estimate. When the parameter space includes the set of all possible spatial clusters in a map, a large and discrete parameter space, maximum likely cluster estimates tend to overestimate the true cluster by a large extent. This calls for a new approach different from the maximum likelihood method for this important public health problem. |
id |
UFOP_3c52991ca854005cf0bee402659078aa |
---|---|
oai_identifier_str |
oai:repositorio.ufop.br:123456789/1766 |
network_acronym_str |
UFOP |
network_name_str |
Repositório Institucional da UFOP |
repository_id_str |
3233 |
spelling |
Fast detection of arbitrarily shaped disease clusters.Disease clustersScan statisticsSpatial clusterSpatial statisticsDisease cluster detection and evaluation have commonly used spatial statistics methods that scan the map with a fixed circular window to locate candidate clusters. Recently, there has been interest in searching for clusters with arbitrary shape. The circular scan test retains high power of detecting a cluster, but does not necessarily identify the exact regions contained in a non-circular cluster particularly well. We propose, implement and evaluate a new procedure that is fast and produces clusters estimates of arbitrary shape in a rich class of possible cluster candidates. We showed that our methods contain the so-called upper level set method as a particular case. We present a power study of our method and, among other results, the main conclusion is that the likelihood-based arbitrarily shaped scan method is not appropriate to _nd a cluster estimate. When the parameter space includes the set of all possible spatial clusters in a map, a large and discrete parameter space, maximum likely cluster estimates tend to overestimate the true cluster by a large extent. This calls for a new approach different from the maximum likelihood method for this important public health problem.2012-11-12T22:19:49Z2012-11-12T22:19:49Z2006info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfASSUNÇÃO, R. M. et al. Fast detection of arbitrarily shaped disease clusters. Statistics in Medicine, v. 25, n. 1, p. 723-742, 2006. Disponível em: <http://onlinelibrary.wiley.com/doi/10.1002/sim.2411/pdf>. Acesso em: 12 nov. 201210970258http://www.repositorio.ufop.br/handle/123456789/1766Assunção, Renato MartinsCosta, Marcelo AzevedoTavares, Andréa IabrudiFerreira, Sabino Joséengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOPinfo:eu-repo/semantics/openAccess2024-11-10T19:05:28Zoai:repositorio.ufop.br:123456789/1766Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332024-11-10T19:05:28Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false |
dc.title.none.fl_str_mv |
Fast detection of arbitrarily shaped disease clusters. |
title |
Fast detection of arbitrarily shaped disease clusters. |
spellingShingle |
Fast detection of arbitrarily shaped disease clusters. Assunção, Renato Martins Disease clusters Scan statistics Spatial cluster Spatial statistics |
title_short |
Fast detection of arbitrarily shaped disease clusters. |
title_full |
Fast detection of arbitrarily shaped disease clusters. |
title_fullStr |
Fast detection of arbitrarily shaped disease clusters. |
title_full_unstemmed |
Fast detection of arbitrarily shaped disease clusters. |
title_sort |
Fast detection of arbitrarily shaped disease clusters. |
author |
Assunção, Renato Martins |
author_facet |
Assunção, Renato Martins Costa, Marcelo Azevedo Tavares, Andréa Iabrudi Ferreira, Sabino José |
author_role |
author |
author2 |
Costa, Marcelo Azevedo Tavares, Andréa Iabrudi Ferreira, Sabino José |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Assunção, Renato Martins Costa, Marcelo Azevedo Tavares, Andréa Iabrudi Ferreira, Sabino José |
dc.subject.por.fl_str_mv |
Disease clusters Scan statistics Spatial cluster Spatial statistics |
topic |
Disease clusters Scan statistics Spatial cluster Spatial statistics |
description |
Disease cluster detection and evaluation have commonly used spatial statistics methods that scan the map with a fixed circular window to locate candidate clusters. Recently, there has been interest in searching for clusters with arbitrary shape. The circular scan test retains high power of detecting a cluster, but does not necessarily identify the exact regions contained in a non-circular cluster particularly well. We propose, implement and evaluate a new procedure that is fast and produces clusters estimates of arbitrary shape in a rich class of possible cluster candidates. We showed that our methods contain the so-called upper level set method as a particular case. We present a power study of our method and, among other results, the main conclusion is that the likelihood-based arbitrarily shaped scan method is not appropriate to _nd a cluster estimate. When the parameter space includes the set of all possible spatial clusters in a map, a large and discrete parameter space, maximum likely cluster estimates tend to overestimate the true cluster by a large extent. This calls for a new approach different from the maximum likelihood method for this important public health problem. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006 2012-11-12T22:19:49Z 2012-11-12T22:19:49Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
ASSUNÇÃO, R. M. et al. Fast detection of arbitrarily shaped disease clusters. Statistics in Medicine, v. 25, n. 1, p. 723-742, 2006. Disponível em: <http://onlinelibrary.wiley.com/doi/10.1002/sim.2411/pdf>. Acesso em: 12 nov. 2012 10970258 http://www.repositorio.ufop.br/handle/123456789/1766 |
identifier_str_mv |
ASSUNÇÃO, R. M. et al. Fast detection of arbitrarily shaped disease clusters. Statistics in Medicine, v. 25, n. 1, p. 723-742, 2006. Disponível em: <http://onlinelibrary.wiley.com/doi/10.1002/sim.2411/pdf>. Acesso em: 12 nov. 2012 10970258 |
url |
http://www.repositorio.ufop.br/handle/123456789/1766 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFOP instname:Universidade Federal de Ouro Preto (UFOP) instacron:UFOP |
instname_str |
Universidade Federal de Ouro Preto (UFOP) |
instacron_str |
UFOP |
institution |
UFOP |
reponame_str |
Repositório Institucional da UFOP |
collection |
Repositório Institucional da UFOP |
repository.name.fl_str_mv |
Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP) |
repository.mail.fl_str_mv |
repositorio@ufop.edu.br |
_version_ |
1823329395727663104 |