Fast detection of arbitrarily shaped disease clusters.

Detalhes bibliográficos
Autor(a) principal: Assunção, Renato Martins
Data de Publicação: 2006
Outros Autores: Costa, Marcelo Azevedo, Tavares, Andréa Iabrudi, Ferreira, Sabino José
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFOP
Texto Completo: http://www.repositorio.ufop.br/handle/123456789/1766
Resumo: Disease cluster detection and evaluation have commonly used spatial statistics methods that scan the map with a fixed circular window to locate candidate clusters. Recently, there has been interest in searching for clusters with arbitrary shape. The circular scan test retains high power of detecting a cluster, but does not necessarily identify the exact regions contained in a non-circular cluster particularly well. We propose, implement and evaluate a new procedure that is fast and produces clusters estimates of arbitrary shape in a rich class of possible cluster candidates. We showed that our methods contain the so-called upper level set method as a particular case. We present a power study of our method and, among other results, the main conclusion is that the likelihood-based arbitrarily shaped scan method is not appropriate to _nd a cluster estimate. When the parameter space includes the set of all possible spatial clusters in a map, a large and discrete parameter space, maximum likely cluster estimates tend to overestimate the true cluster by a large extent. This calls for a new approach different from the maximum likelihood method for this important public health problem.
id UFOP_3c52991ca854005cf0bee402659078aa
oai_identifier_str oai:repositorio.ufop.br:123456789/1766
network_acronym_str UFOP
network_name_str Repositório Institucional da UFOP
repository_id_str 3233
spelling Fast detection of arbitrarily shaped disease clusters.Disease clustersScan statisticsSpatial clusterSpatial statisticsDisease cluster detection and evaluation have commonly used spatial statistics methods that scan the map with a fixed circular window to locate candidate clusters. Recently, there has been interest in searching for clusters with arbitrary shape. The circular scan test retains high power of detecting a cluster, but does not necessarily identify the exact regions contained in a non-circular cluster particularly well. We propose, implement and evaluate a new procedure that is fast and produces clusters estimates of arbitrary shape in a rich class of possible cluster candidates. We showed that our methods contain the so-called upper level set method as a particular case. We present a power study of our method and, among other results, the main conclusion is that the likelihood-based arbitrarily shaped scan method is not appropriate to _nd a cluster estimate. When the parameter space includes the set of all possible spatial clusters in a map, a large and discrete parameter space, maximum likely cluster estimates tend to overestimate the true cluster by a large extent. This calls for a new approach different from the maximum likelihood method for this important public health problem.2012-11-12T22:19:49Z2012-11-12T22:19:49Z2006info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfASSUNÇÃO, R. M. et al. Fast detection of arbitrarily shaped disease clusters. Statistics in Medicine, v. 25, n. 1, p. 723-742, 2006. Disponível em: <http://onlinelibrary.wiley.com/doi/10.1002/sim.2411/pdf>. Acesso em: 12 nov. 201210970258http://www.repositorio.ufop.br/handle/123456789/1766Assunção, Renato MartinsCosta, Marcelo AzevedoTavares, Andréa IabrudiFerreira, Sabino Joséengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOPinfo:eu-repo/semantics/openAccess2024-11-10T19:05:28Zoai:repositorio.ufop.br:123456789/1766Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332024-11-10T19:05:28Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false
dc.title.none.fl_str_mv Fast detection of arbitrarily shaped disease clusters.
title Fast detection of arbitrarily shaped disease clusters.
spellingShingle Fast detection of arbitrarily shaped disease clusters.
Assunção, Renato Martins
Disease clusters
Scan statistics
Spatial cluster
Spatial statistics
title_short Fast detection of arbitrarily shaped disease clusters.
title_full Fast detection of arbitrarily shaped disease clusters.
title_fullStr Fast detection of arbitrarily shaped disease clusters.
title_full_unstemmed Fast detection of arbitrarily shaped disease clusters.
title_sort Fast detection of arbitrarily shaped disease clusters.
author Assunção, Renato Martins
author_facet Assunção, Renato Martins
Costa, Marcelo Azevedo
Tavares, Andréa Iabrudi
Ferreira, Sabino José
author_role author
author2 Costa, Marcelo Azevedo
Tavares, Andréa Iabrudi
Ferreira, Sabino José
author2_role author
author
author
dc.contributor.author.fl_str_mv Assunção, Renato Martins
Costa, Marcelo Azevedo
Tavares, Andréa Iabrudi
Ferreira, Sabino José
dc.subject.por.fl_str_mv Disease clusters
Scan statistics
Spatial cluster
Spatial statistics
topic Disease clusters
Scan statistics
Spatial cluster
Spatial statistics
description Disease cluster detection and evaluation have commonly used spatial statistics methods that scan the map with a fixed circular window to locate candidate clusters. Recently, there has been interest in searching for clusters with arbitrary shape. The circular scan test retains high power of detecting a cluster, but does not necessarily identify the exact regions contained in a non-circular cluster particularly well. We propose, implement and evaluate a new procedure that is fast and produces clusters estimates of arbitrary shape in a rich class of possible cluster candidates. We showed that our methods contain the so-called upper level set method as a particular case. We present a power study of our method and, among other results, the main conclusion is that the likelihood-based arbitrarily shaped scan method is not appropriate to _nd a cluster estimate. When the parameter space includes the set of all possible spatial clusters in a map, a large and discrete parameter space, maximum likely cluster estimates tend to overestimate the true cluster by a large extent. This calls for a new approach different from the maximum likelihood method for this important public health problem.
publishDate 2006
dc.date.none.fl_str_mv 2006
2012-11-12T22:19:49Z
2012-11-12T22:19:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv ASSUNÇÃO, R. M. et al. Fast detection of arbitrarily shaped disease clusters. Statistics in Medicine, v. 25, n. 1, p. 723-742, 2006. Disponível em: <http://onlinelibrary.wiley.com/doi/10.1002/sim.2411/pdf>. Acesso em: 12 nov. 2012
10970258
http://www.repositorio.ufop.br/handle/123456789/1766
identifier_str_mv ASSUNÇÃO, R. M. et al. Fast detection of arbitrarily shaped disease clusters. Statistics in Medicine, v. 25, n. 1, p. 723-742, 2006. Disponível em: <http://onlinelibrary.wiley.com/doi/10.1002/sim.2411/pdf>. Acesso em: 12 nov. 2012
10970258
url http://www.repositorio.ufop.br/handle/123456789/1766
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFOP
instname:Universidade Federal de Ouro Preto (UFOP)
instacron:UFOP
instname_str Universidade Federal de Ouro Preto (UFOP)
instacron_str UFOP
institution UFOP
reponame_str Repositório Institucional da UFOP
collection Repositório Institucional da UFOP
repository.name.fl_str_mv Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)
repository.mail.fl_str_mv repositorio@ufop.edu.br
_version_ 1823329395727663104