A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level.

Detalhes bibliográficos
Autor(a) principal: Damasceno, Josué Geraldo
Data de Publicação: 2020
Outros Autores: Miranda, José Antônio Gonçalves, Araújo, Luiz Gustavo Perona
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFOP
Texto Completo: http://www.repositorio.ufop.br/jspui/handle/123456789/16114
https://doi.org/10.20537/nd200407
Resumo: In this work we study the dynamical behavior of Tonelli Lagrangian systems defined on the tangent bundle of the torus T2 = R2/Z2. We prove that the Lagrangian flow restricted to a high energy level E−1 L (c) (i.e., c>c0(L)) has positive topological entropy if the flow satisfies the Kupka-Smale property in E−1 L (c) (i.e., all closed orbits with energy c are hyperbolic or elliptic and all heteroclinic intersections are transverse on E−1 L (c)). The proof requires the use of well-known results from Aubry – Mather theory.
id UFOP_4a244d2a7251d6c1acff9a3b0cbed1c2
oai_identifier_str oai:repositorio.ufop.br:123456789/16114
network_acronym_str UFOP
network_name_str Repositório Institucional da UFOP
repository_id_str 3233
spelling A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level.Aubry – mather theoryStatic classesIn this work we study the dynamical behavior of Tonelli Lagrangian systems defined on the tangent bundle of the torus T2 = R2/Z2. We prove that the Lagrangian flow restricted to a high energy level E−1 L (c) (i.e., c>c0(L)) has positive topological entropy if the flow satisfies the Kupka-Smale property in E−1 L (c) (i.e., all closed orbits with energy c are hyperbolic or elliptic and all heteroclinic intersections are transverse on E−1 L (c)). The proof requires the use of well-known results from Aubry – Mather theory.2023-02-06T20:44:36Z2023-02-06T20:44:36Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfDAMASCENO, J. G.; MIRANDA, J. A. G.; ARAÚJO, L. G. P. A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level. Nelineinaya Dinamika, v. 16, n. 4, p. 625-635, 2020. Disponível em: <http://nd.ics.org.ru/nd200407/>. Acesso em: 06 jul. 2022.2658-5316http://www.repositorio.ufop.br/jspui/handle/123456789/16114https://doi.org/10.20537/nd200407This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License. Fonte: Russian Journal of Nonlinear Dynamics <http://nd.ics.org.ru/nd200407/>. Acesso em: 19 out. 2022.info:eu-repo/semantics/openAccessDamasceno, Josué GeraldoMiranda, José Antônio GonçalvesAraújo, Luiz Gustavo Peronaengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2023-02-06T20:44:43Zoai:repositorio.ufop.br:123456789/16114Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332023-02-06T20:44:43Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false
dc.title.none.fl_str_mv A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level.
title A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level.
spellingShingle A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level.
Damasceno, Josué Geraldo
Aubry – mather theory
Static classes
title_short A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level.
title_full A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level.
title_fullStr A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level.
title_full_unstemmed A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level.
title_sort A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level.
author Damasceno, Josué Geraldo
author_facet Damasceno, Josué Geraldo
Miranda, José Antônio Gonçalves
Araújo, Luiz Gustavo Perona
author_role author
author2 Miranda, José Antônio Gonçalves
Araújo, Luiz Gustavo Perona
author2_role author
author
dc.contributor.author.fl_str_mv Damasceno, Josué Geraldo
Miranda, José Antônio Gonçalves
Araújo, Luiz Gustavo Perona
dc.subject.por.fl_str_mv Aubry – mather theory
Static classes
topic Aubry – mather theory
Static classes
description In this work we study the dynamical behavior of Tonelli Lagrangian systems defined on the tangent bundle of the torus T2 = R2/Z2. We prove that the Lagrangian flow restricted to a high energy level E−1 L (c) (i.e., c>c0(L)) has positive topological entropy if the flow satisfies the Kupka-Smale property in E−1 L (c) (i.e., all closed orbits with energy c are hyperbolic or elliptic and all heteroclinic intersections are transverse on E−1 L (c)). The proof requires the use of well-known results from Aubry – Mather theory.
publishDate 2020
dc.date.none.fl_str_mv 2020
2023-02-06T20:44:36Z
2023-02-06T20:44:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv DAMASCENO, J. G.; MIRANDA, J. A. G.; ARAÚJO, L. G. P. A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level. Nelineinaya Dinamika, v. 16, n. 4, p. 625-635, 2020. Disponível em: <http://nd.ics.org.ru/nd200407/>. Acesso em: 06 jul. 2022.
2658-5316
http://www.repositorio.ufop.br/jspui/handle/123456789/16114
https://doi.org/10.20537/nd200407
identifier_str_mv DAMASCENO, J. G.; MIRANDA, J. A. G.; ARAÚJO, L. G. P. A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level. Nelineinaya Dinamika, v. 16, n. 4, p. 625-635, 2020. Disponível em: <http://nd.ics.org.ru/nd200407/>. Acesso em: 06 jul. 2022.
2658-5316
url http://www.repositorio.ufop.br/jspui/handle/123456789/16114
https://doi.org/10.20537/nd200407
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFOP
instname:Universidade Federal de Ouro Preto (UFOP)
instacron:UFOP
instname_str Universidade Federal de Ouro Preto (UFOP)
instacron_str UFOP
institution UFOP
reponame_str Repositório Institucional da UFOP
collection Repositório Institucional da UFOP
repository.name.fl_str_mv Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)
repository.mail.fl_str_mv repositorio@ufop.edu.br
_version_ 1813002806759522304