A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFOP |
Texto Completo: | http://www.repositorio.ufop.br/jspui/handle/123456789/16114 https://doi.org/10.20537/nd200407 |
Resumo: | In this work we study the dynamical behavior of Tonelli Lagrangian systems defined on the tangent bundle of the torus T2 = R2/Z2. We prove that the Lagrangian flow restricted to a high energy level E−1 L (c) (i.e., c>c0(L)) has positive topological entropy if the flow satisfies the Kupka-Smale property in E−1 L (c) (i.e., all closed orbits with energy c are hyperbolic or elliptic and all heteroclinic intersections are transverse on E−1 L (c)). The proof requires the use of well-known results from Aubry – Mather theory. |
id |
UFOP_4a244d2a7251d6c1acff9a3b0cbed1c2 |
---|---|
oai_identifier_str |
oai:repositorio.ufop.br:123456789/16114 |
network_acronym_str |
UFOP |
network_name_str |
Repositório Institucional da UFOP |
repository_id_str |
3233 |
spelling |
A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level.Aubry – mather theoryStatic classesIn this work we study the dynamical behavior of Tonelli Lagrangian systems defined on the tangent bundle of the torus T2 = R2/Z2. We prove that the Lagrangian flow restricted to a high energy level E−1 L (c) (i.e., c>c0(L)) has positive topological entropy if the flow satisfies the Kupka-Smale property in E−1 L (c) (i.e., all closed orbits with energy c are hyperbolic or elliptic and all heteroclinic intersections are transverse on E−1 L (c)). The proof requires the use of well-known results from Aubry – Mather theory.2023-02-06T20:44:36Z2023-02-06T20:44:36Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfDAMASCENO, J. G.; MIRANDA, J. A. G.; ARAÚJO, L. G. P. A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level. Nelineinaya Dinamika, v. 16, n. 4, p. 625-635, 2020. Disponível em: <http://nd.ics.org.ru/nd200407/>. Acesso em: 06 jul. 2022.2658-5316http://www.repositorio.ufop.br/jspui/handle/123456789/16114https://doi.org/10.20537/nd200407This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License. Fonte: Russian Journal of Nonlinear Dynamics <http://nd.ics.org.ru/nd200407/>. Acesso em: 19 out. 2022.info:eu-repo/semantics/openAccessDamasceno, Josué GeraldoMiranda, José Antônio GonçalvesAraújo, Luiz Gustavo Peronaengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2023-02-06T20:44:43Zoai:repositorio.ufop.br:123456789/16114Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332023-02-06T20:44:43Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false |
dc.title.none.fl_str_mv |
A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level. |
title |
A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level. |
spellingShingle |
A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level. Damasceno, Josué Geraldo Aubry – mather theory Static classes |
title_short |
A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level. |
title_full |
A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level. |
title_fullStr |
A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level. |
title_full_unstemmed |
A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level. |
title_sort |
A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level. |
author |
Damasceno, Josué Geraldo |
author_facet |
Damasceno, Josué Geraldo Miranda, José Antônio Gonçalves Araújo, Luiz Gustavo Perona |
author_role |
author |
author2 |
Miranda, José Antônio Gonçalves Araújo, Luiz Gustavo Perona |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Damasceno, Josué Geraldo Miranda, José Antônio Gonçalves Araújo, Luiz Gustavo Perona |
dc.subject.por.fl_str_mv |
Aubry – mather theory Static classes |
topic |
Aubry – mather theory Static classes |
description |
In this work we study the dynamical behavior of Tonelli Lagrangian systems defined on the tangent bundle of the torus T2 = R2/Z2. We prove that the Lagrangian flow restricted to a high energy level E−1 L (c) (i.e., c>c0(L)) has positive topological entropy if the flow satisfies the Kupka-Smale property in E−1 L (c) (i.e., all closed orbits with energy c are hyperbolic or elliptic and all heteroclinic intersections are transverse on E−1 L (c)). The proof requires the use of well-known results from Aubry – Mather theory. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 2023-02-06T20:44:36Z 2023-02-06T20:44:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
DAMASCENO, J. G.; MIRANDA, J. A. G.; ARAÚJO, L. G. P. A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level. Nelineinaya Dinamika, v. 16, n. 4, p. 625-635, 2020. Disponível em: <http://nd.ics.org.ru/nd200407/>. Acesso em: 06 jul. 2022. 2658-5316 http://www.repositorio.ufop.br/jspui/handle/123456789/16114 https://doi.org/10.20537/nd200407 |
identifier_str_mv |
DAMASCENO, J. G.; MIRANDA, J. A. G.; ARAÚJO, L. G. P. A note on Tonelli Lagrangian systems on T2 with positive topological entropy on a high energy level. Nelineinaya Dinamika, v. 16, n. 4, p. 625-635, 2020. Disponível em: <http://nd.ics.org.ru/nd200407/>. Acesso em: 06 jul. 2022. 2658-5316 |
url |
http://www.repositorio.ufop.br/jspui/handle/123456789/16114 https://doi.org/10.20537/nd200407 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFOP instname:Universidade Federal de Ouro Preto (UFOP) instacron:UFOP |
instname_str |
Universidade Federal de Ouro Preto (UFOP) |
instacron_str |
UFOP |
institution |
UFOP |
reponame_str |
Repositório Institucional da UFOP |
collection |
Repositório Institucional da UFOP |
repository.name.fl_str_mv |
Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP) |
repository.mail.fl_str_mv |
repositorio@ufop.edu.br |
_version_ |
1813002806759522304 |