Symbolic data analysis and supervised/ non supervised learning algorithms for bridge health monitoring.

Detalhes bibliográficos
Autor(a) principal: Crémona, Christian
Data de Publicação: 2011
Outros Autores: Cury, Alexandre Abrahão, Orcesi, André, Dieleman, Luc
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UFOP
Texto Completo: http://www.repositorio.ufop.br/handle/123456789/1537
Resumo: In the past few years, numerous methods for damage assessment in connection with structural health monitoring were proposed in the literature. Several problems are raised for making these approaches practical for the engineer. The first concern is to determine whether a structure presents an abnormal behavior or not. Statistical inference is concerned with the implementation of algorithms that analyze the distribution of extracted features in an effort to make decisions on damage diagnosis. Learning algorithms have extensively been applied to classification and pattern recognition problems in the past years and deserve to be used for structural health monitoring. Two approaches are nevertheless available depending on the ability to perform supervised or unsupervised learning. The first group of methods forms the family of classification methods whereas the second group is referred to clustering techniques. In addition, data acquisition campaigns of civil engineering structures can last from several minutes to years. Dealing with large amounts of data is not an easy task and suitable tools are required to correctly extract important features from them. To deal with this issue, symbolic data analysis (SDA) is introduced for managing complex, aggregated, relational, and higher-level data. SDA is then coupled with supervised and non supervised learning algorithms to form a new family of hybrid techniques. From the non supervised learning side, dynamic clouds and hierarchy-divisive method have been used. From the supervised learning side, neural networks and support vector machines have been introduced. All these techniques have been developed within the concept of symbolic data analysis in order to compress data without losing its inherent variability. To highlight the different features of these techniques for structural health monitoring, this paper focuses attention on the monitoring of a railway bridge belonging to the high speed track between Paris and Lyon. During the month of June 2003, a strengthening procedure was carried out in this bridge. In so doing, vibration measurements were recorded under three different structural conditions: before, during and strengthening. In the following years (2004, 2005 and 2006), new tests were performed to observe how the dynamic behavior of the bridge evolved, especially for the case of frequency changes. The objective was to verify whether the strengthening procedure was still effective or not, in order terms if the new data could be still assigned to the condition “after strengthening”. This paper reports the major results obtained and shows how the techniques can be applied to cluster structural behaviors and classify new data.
id UFOP_594f0ce486e46b1a028b362c27ea0a6e
oai_identifier_str oai:localhost:123456789/1537
network_acronym_str UFOP
network_name_str Repositório Institucional da UFOP
repository_id_str 3233
spelling Crémona, ChristianCury, Alexandre AbrahãoOrcesi, AndréDieleman, Luc2012-10-03T20:13:20Z2012-10-03T20:13:20Z2011CRÉMONA, C. et al. Symbolic data analysis and supervised/non supervised learning algorithms for bridge health monitoring. In. 9th World Congress on Railway Research, 9., 2011. Lille. Anais... Lille: World Congress on Railway Research, 2011. Disponível em: <http://www.railway-research.org/IMG/pdf/g7_cremona_christian.pdf>. Acesso em: 03 out. 2012.http://www.repositorio.ufop.br/handle/123456789/1537In the past few years, numerous methods for damage assessment in connection with structural health monitoring were proposed in the literature. Several problems are raised for making these approaches practical for the engineer. The first concern is to determine whether a structure presents an abnormal behavior or not. Statistical inference is concerned with the implementation of algorithms that analyze the distribution of extracted features in an effort to make decisions on damage diagnosis. Learning algorithms have extensively been applied to classification and pattern recognition problems in the past years and deserve to be used for structural health monitoring. Two approaches are nevertheless available depending on the ability to perform supervised or unsupervised learning. The first group of methods forms the family of classification methods whereas the second group is referred to clustering techniques. In addition, data acquisition campaigns of civil engineering structures can last from several minutes to years. Dealing with large amounts of data is not an easy task and suitable tools are required to correctly extract important features from them. To deal with this issue, symbolic data analysis (SDA) is introduced for managing complex, aggregated, relational, and higher-level data. SDA is then coupled with supervised and non supervised learning algorithms to form a new family of hybrid techniques. From the non supervised learning side, dynamic clouds and hierarchy-divisive method have been used. From the supervised learning side, neural networks and support vector machines have been introduced. All these techniques have been developed within the concept of symbolic data analysis in order to compress data without losing its inherent variability. To highlight the different features of these techniques for structural health monitoring, this paper focuses attention on the monitoring of a railway bridge belonging to the high speed track between Paris and Lyon. During the month of June 2003, a strengthening procedure was carried out in this bridge. In so doing, vibration measurements were recorded under three different structural conditions: before, during and strengthening. In the following years (2004, 2005 and 2006), new tests were performed to observe how the dynamic behavior of the bridge evolved, especially for the case of frequency changes. The objective was to verify whether the strengthening procedure was still effective or not, in order terms if the new data could be still assigned to the condition “after strengthening”. This paper reports the major results obtained and shows how the techniques can be applied to cluster structural behaviors and classify new data.Symbolic data analysis and supervised/ non supervised learning algorithms for bridge health monitoring.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOPinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://www.repositorio.ufop.br/bitstream/123456789/1537/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD55ORIGINALEVENTO_SymbolicDataAnalysis.pdfEVENTO_SymbolicDataAnalysis.pdfapplication/pdf215977http://www.repositorio.ufop.br/bitstream/123456789/1537/1/EVENTO_SymbolicDataAnalysis.pdf1ad49585d121f624fc0f0278de654fd3MD51123456789/15372017-01-05 07:52:09.994oai:localhost:123456789/1537Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332017-01-05T12:52:09Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false
dc.title.pt_BR.fl_str_mv Symbolic data analysis and supervised/ non supervised learning algorithms for bridge health monitoring.
title Symbolic data analysis and supervised/ non supervised learning algorithms for bridge health monitoring.
spellingShingle Symbolic data analysis and supervised/ non supervised learning algorithms for bridge health monitoring.
Crémona, Christian
title_short Symbolic data analysis and supervised/ non supervised learning algorithms for bridge health monitoring.
title_full Symbolic data analysis and supervised/ non supervised learning algorithms for bridge health monitoring.
title_fullStr Symbolic data analysis and supervised/ non supervised learning algorithms for bridge health monitoring.
title_full_unstemmed Symbolic data analysis and supervised/ non supervised learning algorithms for bridge health monitoring.
title_sort Symbolic data analysis and supervised/ non supervised learning algorithms for bridge health monitoring.
author Crémona, Christian
author_facet Crémona, Christian
Cury, Alexandre Abrahão
Orcesi, André
Dieleman, Luc
author_role author
author2 Cury, Alexandre Abrahão
Orcesi, André
Dieleman, Luc
author2_role author
author
author
dc.contributor.author.fl_str_mv Crémona, Christian
Cury, Alexandre Abrahão
Orcesi, André
Dieleman, Luc
description In the past few years, numerous methods for damage assessment in connection with structural health monitoring were proposed in the literature. Several problems are raised for making these approaches practical for the engineer. The first concern is to determine whether a structure presents an abnormal behavior or not. Statistical inference is concerned with the implementation of algorithms that analyze the distribution of extracted features in an effort to make decisions on damage diagnosis. Learning algorithms have extensively been applied to classification and pattern recognition problems in the past years and deserve to be used for structural health monitoring. Two approaches are nevertheless available depending on the ability to perform supervised or unsupervised learning. The first group of methods forms the family of classification methods whereas the second group is referred to clustering techniques. In addition, data acquisition campaigns of civil engineering structures can last from several minutes to years. Dealing with large amounts of data is not an easy task and suitable tools are required to correctly extract important features from them. To deal with this issue, symbolic data analysis (SDA) is introduced for managing complex, aggregated, relational, and higher-level data. SDA is then coupled with supervised and non supervised learning algorithms to form a new family of hybrid techniques. From the non supervised learning side, dynamic clouds and hierarchy-divisive method have been used. From the supervised learning side, neural networks and support vector machines have been introduced. All these techniques have been developed within the concept of symbolic data analysis in order to compress data without losing its inherent variability. To highlight the different features of these techniques for structural health monitoring, this paper focuses attention on the monitoring of a railway bridge belonging to the high speed track between Paris and Lyon. During the month of June 2003, a strengthening procedure was carried out in this bridge. In so doing, vibration measurements were recorded under three different structural conditions: before, during and strengthening. In the following years (2004, 2005 and 2006), new tests were performed to observe how the dynamic behavior of the bridge evolved, especially for the case of frequency changes. The objective was to verify whether the strengthening procedure was still effective or not, in order terms if the new data could be still assigned to the condition “after strengthening”. This paper reports the major results obtained and shows how the techniques can be applied to cluster structural behaviors and classify new data.
publishDate 2011
dc.date.issued.fl_str_mv 2011
dc.date.accessioned.fl_str_mv 2012-10-03T20:13:20Z
dc.date.available.fl_str_mv 2012-10-03T20:13:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.citation.fl_str_mv CRÉMONA, C. et al. Symbolic data analysis and supervised/non supervised learning algorithms for bridge health monitoring. In. 9th World Congress on Railway Research, 9., 2011. Lille. Anais... Lille: World Congress on Railway Research, 2011. Disponível em: <http://www.railway-research.org/IMG/pdf/g7_cremona_christian.pdf>. Acesso em: 03 out. 2012.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufop.br/handle/123456789/1537
identifier_str_mv CRÉMONA, C. et al. Symbolic data analysis and supervised/non supervised learning algorithms for bridge health monitoring. In. 9th World Congress on Railway Research, 9., 2011. Lille. Anais... Lille: World Congress on Railway Research, 2011. Disponível em: <http://www.railway-research.org/IMG/pdf/g7_cremona_christian.pdf>. Acesso em: 03 out. 2012.
url http://www.repositorio.ufop.br/handle/123456789/1537
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFOP
instname:Universidade Federal de Ouro Preto (UFOP)
instacron:UFOP
instname_str Universidade Federal de Ouro Preto (UFOP)
instacron_str UFOP
institution UFOP
reponame_str Repositório Institucional da UFOP
collection Repositório Institucional da UFOP
bitstream.url.fl_str_mv http://www.repositorio.ufop.br/bitstream/123456789/1537/5/license.txt
http://www.repositorio.ufop.br/bitstream/123456789/1537/1/EVENTO_SymbolicDataAnalysis.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
1ad49585d121f624fc0f0278de654fd3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)
repository.mail.fl_str_mv repositorio@ufop.edu.br
_version_ 1801685768268152832