Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFOP |
Texto Completo: | http://www.repositorio.ufop.br/handle/123456789/1053 |
Resumo: | The main objective of the present study was to evaluate the reduction in halofantrine (Hf) toxicity, an antimalarial drug frequently associated with QT interval prolongation in electrocardiogram, by its entrapment in poly-ε-caprolactone nanocapsules (NC). The acute lethal dose (LD100) of Hf.HCl experimentally observed was 200 mg/kg whereas the calculated LD50 was 154 mg/kg. In contrast, the LD100 for Hf-NC was 300 mg/ kg with a longer mean time to death than Hf.HCl. The calculated LD50 was 249 mg/kg for Hf-NC. The Hf entrapped in PCL NC presented a greater efficacy than PLA-PEG NC and than Hf solution in P. berghei-infected mice at 1 mg/kg. The cardiovascular parameters, ECG and arterial blood pressure, were evaluated in anaesthetized Wistar rats after the IV administration of a single, especially high dose (100 and 150 mg/kg) of halofantrine base loaded-nanocapsules (Hf-NC) or halofantrine chlorhydrate (Hf.HCl) solution. It was observed that Hf solution caused prolongation of the QT and PR intervals of the ECG; however, this effect was significantly (Pb0.001) reduced when Hf was administered entrapped in nanocapsules. The treatment with Hf.HCl induced a pronounced bradycardia and severe hypotension leading to death. The effect of Hf-NC upon heart rate was reduced from 58 to 75% for 100 and 150 mg/kg, respectively, when compared with Hf.HCl solution. These findings show that the encapsulation of halofantrine reduces the QT interval prolongation of ECG in rats and suggest that a modification of drug distribution was possible by using nanocapsules. Hf encapsulation was the main factor responsible for the significant reduction in cardiac toxicity observed. |
id |
UFOP_5d0c6ec09c7bd93e25b9fdedcc735bd2 |
---|---|
oai_identifier_str |
oai:repositorio.ufop.br:123456789/1053 |
network_acronym_str |
UFOP |
network_name_str |
Repositório Institucional da UFOP |
repository_id_str |
3233 |
spelling |
Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices.CardiotoxicityLipophilic drugHalofantrineNanocapsulesDrug carriersThe main objective of the present study was to evaluate the reduction in halofantrine (Hf) toxicity, an antimalarial drug frequently associated with QT interval prolongation in electrocardiogram, by its entrapment in poly-ε-caprolactone nanocapsules (NC). The acute lethal dose (LD100) of Hf.HCl experimentally observed was 200 mg/kg whereas the calculated LD50 was 154 mg/kg. In contrast, the LD100 for Hf-NC was 300 mg/ kg with a longer mean time to death than Hf.HCl. The calculated LD50 was 249 mg/kg for Hf-NC. The Hf entrapped in PCL NC presented a greater efficacy than PLA-PEG NC and than Hf solution in P. berghei-infected mice at 1 mg/kg. The cardiovascular parameters, ECG and arterial blood pressure, were evaluated in anaesthetized Wistar rats after the IV administration of a single, especially high dose (100 and 150 mg/kg) of halofantrine base loaded-nanocapsules (Hf-NC) or halofantrine chlorhydrate (Hf.HCl) solution. It was observed that Hf solution caused prolongation of the QT and PR intervals of the ECG; however, this effect was significantly (Pb0.001) reduced when Hf was administered entrapped in nanocapsules. The treatment with Hf.HCl induced a pronounced bradycardia and severe hypotension leading to death. The effect of Hf-NC upon heart rate was reduced from 58 to 75% for 100 and 150 mg/kg, respectively, when compared with Hf.HCl solution. These findings show that the encapsulation of halofantrine reduces the QT interval prolongation of ECG in rats and suggest that a modification of drug distribution was possible by using nanocapsules. Hf encapsulation was the main factor responsible for the significant reduction in cardiac toxicity observed.2012-07-10T16:18:46Z2012-07-10T16:18:46Z2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfLEITE, E. A. et al. Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. Life Sciences, v. 80, n. 14, p. 1327-1334, mar. 2007. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0024320507000173>. Acesso em: 10 jul. 2012.00243205http://www.repositorio.ufop.br/handle/123456789/1053O periódico Life Sciences concede permissão para depósito do artigo no Repositório Institucional da UFOP. Número da licença: 3285421187900.info:eu-repo/semantics/openAccessLeite, Elaine AmaralGuimarães, Andrea GrabeGuimarães, Homero NogueiraCoelho, George Luiz Lins MachadoBarratt, GillianMosqueira, Vanessa Carla Furtadoengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2019-02-25T18:43:55Zoai:repositorio.ufop.br:123456789/1053Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332019-02-25T18:43:55Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false |
dc.title.none.fl_str_mv |
Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. |
title |
Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. |
spellingShingle |
Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. Leite, Elaine Amaral Cardiotoxicity Lipophilic drug Halofantrine Nanocapsules Drug carriers |
title_short |
Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. |
title_full |
Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. |
title_fullStr |
Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. |
title_full_unstemmed |
Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. |
title_sort |
Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. |
author |
Leite, Elaine Amaral |
author_facet |
Leite, Elaine Amaral Guimarães, Andrea Grabe Guimarães, Homero Nogueira Coelho, George Luiz Lins Machado Barratt, Gillian Mosqueira, Vanessa Carla Furtado |
author_role |
author |
author2 |
Guimarães, Andrea Grabe Guimarães, Homero Nogueira Coelho, George Luiz Lins Machado Barratt, Gillian Mosqueira, Vanessa Carla Furtado |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Leite, Elaine Amaral Guimarães, Andrea Grabe Guimarães, Homero Nogueira Coelho, George Luiz Lins Machado Barratt, Gillian Mosqueira, Vanessa Carla Furtado |
dc.subject.por.fl_str_mv |
Cardiotoxicity Lipophilic drug Halofantrine Nanocapsules Drug carriers |
topic |
Cardiotoxicity Lipophilic drug Halofantrine Nanocapsules Drug carriers |
description |
The main objective of the present study was to evaluate the reduction in halofantrine (Hf) toxicity, an antimalarial drug frequently associated with QT interval prolongation in electrocardiogram, by its entrapment in poly-ε-caprolactone nanocapsules (NC). The acute lethal dose (LD100) of Hf.HCl experimentally observed was 200 mg/kg whereas the calculated LD50 was 154 mg/kg. In contrast, the LD100 for Hf-NC was 300 mg/ kg with a longer mean time to death than Hf.HCl. The calculated LD50 was 249 mg/kg for Hf-NC. The Hf entrapped in PCL NC presented a greater efficacy than PLA-PEG NC and than Hf solution in P. berghei-infected mice at 1 mg/kg. The cardiovascular parameters, ECG and arterial blood pressure, were evaluated in anaesthetized Wistar rats after the IV administration of a single, especially high dose (100 and 150 mg/kg) of halofantrine base loaded-nanocapsules (Hf-NC) or halofantrine chlorhydrate (Hf.HCl) solution. It was observed that Hf solution caused prolongation of the QT and PR intervals of the ECG; however, this effect was significantly (Pb0.001) reduced when Hf was administered entrapped in nanocapsules. The treatment with Hf.HCl induced a pronounced bradycardia and severe hypotension leading to death. The effect of Hf-NC upon heart rate was reduced from 58 to 75% for 100 and 150 mg/kg, respectively, when compared with Hf.HCl solution. These findings show that the encapsulation of halofantrine reduces the QT interval prolongation of ECG in rats and suggest that a modification of drug distribution was possible by using nanocapsules. Hf encapsulation was the main factor responsible for the significant reduction in cardiac toxicity observed. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 2012-07-10T16:18:46Z 2012-07-10T16:18:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
LEITE, E. A. et al. Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. Life Sciences, v. 80, n. 14, p. 1327-1334, mar. 2007. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0024320507000173>. Acesso em: 10 jul. 2012. 00243205 http://www.repositorio.ufop.br/handle/123456789/1053 |
identifier_str_mv |
LEITE, E. A. et al. Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. Life Sciences, v. 80, n. 14, p. 1327-1334, mar. 2007. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0024320507000173>. Acesso em: 10 jul. 2012. 00243205 |
url |
http://www.repositorio.ufop.br/handle/123456789/1053 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFOP instname:Universidade Federal de Ouro Preto (UFOP) instacron:UFOP |
instname_str |
Universidade Federal de Ouro Preto (UFOP) |
instacron_str |
UFOP |
institution |
UFOP |
reponame_str |
Repositório Institucional da UFOP |
collection |
Repositório Institucional da UFOP |
repository.name.fl_str_mv |
Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP) |
repository.mail.fl_str_mv |
repositorio@ufop.edu.br |
_version_ |
1813002829465387008 |