HiSP-GC : a classification method based on probabilistic analysis of patterns.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFOP |
Texto Completo: | http://www.repositorio.ufop.br/handle/123456789/4398 |
Resumo: | Classification is one of the most important tasks in data mining and, nowadays, has been applied to solve problems related to different areas, such as administration, finance, education, health and others. Therefore, the construction of precise and computationally efficient classifiers is a relevant challenge in data mining field. In previous works we presented an efficient method for protein classification, called HiSP (Highest Subset Probability) classifier, capable of yielding highly accurate results, outperforming the results obtained by other researchers. Aiming to construct a general purpose classifier based on the ideas explored to solve the protein classification problem, the method previously proposed was adapted and extended. Here we present this expanded and general classification method, called HiSP-GC (HiSP General Classifier), and show that it is appropriate and efficient for several kinds of databases associated with different applications. |
id |
UFOP_8e75584b5f0f4978554b6e494f303f3f |
---|---|
oai_identifier_str |
oai:repositorio.ufop.br:123456789/4398 |
network_acronym_str |
UFOP |
network_name_str |
Repositório Institucional da UFOP |
repository_id_str |
3233 |
spelling |
HiSP-GC : a classification method based on probabilistic analysis of patterns.ClassificationData miningClassification is one of the most important tasks in data mining and, nowadays, has been applied to solve problems related to different areas, such as administration, finance, education, health and others. Therefore, the construction of precise and computationally efficient classifiers is a relevant challenge in data mining field. In previous works we presented an efficient method for protein classification, called HiSP (Highest Subset Probability) classifier, capable of yielding highly accurate results, outperforming the results obtained by other researchers. Aiming to construct a general purpose classifier based on the ideas explored to solve the protein classification problem, the method previously proposed was adapted and extended. Here we present this expanded and general classification method, called HiSP-GC (HiSP General Classifier), and show that it is appropriate and efficient for several kinds of databases associated with different applications.2015-01-28T15:09:14Z2015-01-28T15:09:14Z2010info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfMERSCHMANN, L. H. de C.; PLASTINO, A. HiSP-GC: a classification method based on probabilistic analysis of patterns. Journal of Information and Data Management - JIDM, v. 1, n. 3, p. 423-438, out. 2010. Disponível em: <https://seer.lcc.ufmg.br/index.php/jidm/article/view/78/43>. Acesso em: 23 jan. 2015.2178-7107http://www.repositorio.ufop.br/handle/123456789/4398Permission to copy without fee all or part of the material printed in JIDM is granted provided that the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission of the Sociedade Brasileira de Computação. Fonte: Informação contida no artigo.info:eu-repo/semantics/openAccessMerschmann, Luiz Henrique de CamposPlastino, Alexandreengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2019-06-13T17:42:41Zoai:repositorio.ufop.br:123456789/4398Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332019-06-13T17:42:41Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false |
dc.title.none.fl_str_mv |
HiSP-GC : a classification method based on probabilistic analysis of patterns. |
title |
HiSP-GC : a classification method based on probabilistic analysis of patterns. |
spellingShingle |
HiSP-GC : a classification method based on probabilistic analysis of patterns. Merschmann, Luiz Henrique de Campos Classification Data mining |
title_short |
HiSP-GC : a classification method based on probabilistic analysis of patterns. |
title_full |
HiSP-GC : a classification method based on probabilistic analysis of patterns. |
title_fullStr |
HiSP-GC : a classification method based on probabilistic analysis of patterns. |
title_full_unstemmed |
HiSP-GC : a classification method based on probabilistic analysis of patterns. |
title_sort |
HiSP-GC : a classification method based on probabilistic analysis of patterns. |
author |
Merschmann, Luiz Henrique de Campos |
author_facet |
Merschmann, Luiz Henrique de Campos Plastino, Alexandre |
author_role |
author |
author2 |
Plastino, Alexandre |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Merschmann, Luiz Henrique de Campos Plastino, Alexandre |
dc.subject.por.fl_str_mv |
Classification Data mining |
topic |
Classification Data mining |
description |
Classification is one of the most important tasks in data mining and, nowadays, has been applied to solve problems related to different areas, such as administration, finance, education, health and others. Therefore, the construction of precise and computationally efficient classifiers is a relevant challenge in data mining field. In previous works we presented an efficient method for protein classification, called HiSP (Highest Subset Probability) classifier, capable of yielding highly accurate results, outperforming the results obtained by other researchers. Aiming to construct a general purpose classifier based on the ideas explored to solve the protein classification problem, the method previously proposed was adapted and extended. Here we present this expanded and general classification method, called HiSP-GC (HiSP General Classifier), and show that it is appropriate and efficient for several kinds of databases associated with different applications. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 2015-01-28T15:09:14Z 2015-01-28T15:09:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
MERSCHMANN, L. H. de C.; PLASTINO, A. HiSP-GC: a classification method based on probabilistic analysis of patterns. Journal of Information and Data Management - JIDM, v. 1, n. 3, p. 423-438, out. 2010. Disponível em: <https://seer.lcc.ufmg.br/index.php/jidm/article/view/78/43>. Acesso em: 23 jan. 2015. 2178-7107 http://www.repositorio.ufop.br/handle/123456789/4398 |
identifier_str_mv |
MERSCHMANN, L. H. de C.; PLASTINO, A. HiSP-GC: a classification method based on probabilistic analysis of patterns. Journal of Information and Data Management - JIDM, v. 1, n. 3, p. 423-438, out. 2010. Disponível em: <https://seer.lcc.ufmg.br/index.php/jidm/article/view/78/43>. Acesso em: 23 jan. 2015. 2178-7107 |
url |
http://www.repositorio.ufop.br/handle/123456789/4398 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFOP instname:Universidade Federal de Ouro Preto (UFOP) instacron:UFOP |
instname_str |
Universidade Federal de Ouro Preto (UFOP) |
instacron_str |
UFOP |
institution |
UFOP |
reponame_str |
Repositório Institucional da UFOP |
collection |
Repositório Institucional da UFOP |
repository.name.fl_str_mv |
Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP) |
repository.mail.fl_str_mv |
repositorio@ufop.edu.br |
_version_ |
1813002832771547136 |