Two-dimensional beams in rectangular coordinates using the radial point interpolation method.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFOP |
Texto Completo: | http://www.repositorio.ufop.br/jspui/handle/123456789/15555 https://doi.org/10.1590/0370-44672018730115 |
Resumo: | The three-dimensional Theory of Elasticity equations lead to a complex solution for most problems in engineering. Therefore, the solutions are typically developed for reduced systems, usually symmetrical or two-dimensional. In this context, compu- tational resources allow the reduction of these simplifications. The most recognized methods of algebraic approximation of the differential equations are the Finite Differ- ences Method and the Finite Element Method (FEM). However, they have limitations in mesh generation and/or adaptation. As follows, Meshless Methods appear as an al- ternative to these options. The present work uses the Radial Point Interpolation Meth- od (RPIM) to evaluate the stress in two-dimensional beams in regions close to loading (Saint Venant’s Principle). Formulations based on the Fourier Series Theory and the RPIM are presented. Multiquadrics Radial Basis Functions were used to obtain the stiffness matrix. Two numerical examples demonstrate the validity of the RPIM for the proposed theme. The results were obtained from the formulations cited and the Finite Element Method for comparison. |
id |
UFOP_8f59b7e9f8f31337193e56037a5a80e9 |
---|---|
oai_identifier_str |
oai:repositorio.ufop.br:123456789/15555 |
network_acronym_str |
UFOP |
network_name_str |
Repositório Institucional da UFOP |
repository_id_str |
3233 |
spelling |
Two-dimensional beams in rectangular coordinates using the radial point interpolation method.Saint-Venant’s principleStress analysisThe three-dimensional Theory of Elasticity equations lead to a complex solution for most problems in engineering. Therefore, the solutions are typically developed for reduced systems, usually symmetrical or two-dimensional. In this context, compu- tational resources allow the reduction of these simplifications. The most recognized methods of algebraic approximation of the differential equations are the Finite Differ- ences Method and the Finite Element Method (FEM). However, they have limitations in mesh generation and/or adaptation. As follows, Meshless Methods appear as an al- ternative to these options. The present work uses the Radial Point Interpolation Meth- od (RPIM) to evaluate the stress in two-dimensional beams in regions close to loading (Saint Venant’s Principle). Formulations based on the Fourier Series Theory and the RPIM are presented. Multiquadrics Radial Basis Functions were used to obtain the stiffness matrix. Two numerical examples demonstrate the validity of the RPIM for the proposed theme. The results were obtained from the formulations cited and the Finite Element Method for comparison.2022-09-29T19:25:31Z2022-09-29T19:25:31Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfFERNANDES, W. L. et al. Two-dimensional beams in rectangular coordinates using the radial point interpolation method. REM - International Engineering Journal, Ouro Preto, v. 73, p. 9-16, jan./mar. 2020. Disponível em: <https://www.scielo.br/j/remi/a/VST96kr8VQB7xpynGRzWRBj/?lang=en>. Acesso em: 29 abr. 2022.2448-167Xhttp://www.repositorio.ufop.br/jspui/handle/123456789/15555https://doi.org/10.1590/0370-44672018730115All content of the journal, except where identified, is licensed under a Creative Commons attribution-type BY. Fonte: o PDF do artigo.info:eu-repo/semantics/openAccessFernandes, William LuizBarbosa, Gustavo BotelhoRosa, Karine DornelaSilva, EmanuelFernandes, Walliston dos Santosengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2022-09-29T19:25:43Zoai:repositorio.ufop.br:123456789/15555Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332022-09-29T19:25:43Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false |
dc.title.none.fl_str_mv |
Two-dimensional beams in rectangular coordinates using the radial point interpolation method. |
title |
Two-dimensional beams in rectangular coordinates using the radial point interpolation method. |
spellingShingle |
Two-dimensional beams in rectangular coordinates using the radial point interpolation method. Fernandes, William Luiz Saint-Venant’s principle Stress analysis |
title_short |
Two-dimensional beams in rectangular coordinates using the radial point interpolation method. |
title_full |
Two-dimensional beams in rectangular coordinates using the radial point interpolation method. |
title_fullStr |
Two-dimensional beams in rectangular coordinates using the radial point interpolation method. |
title_full_unstemmed |
Two-dimensional beams in rectangular coordinates using the radial point interpolation method. |
title_sort |
Two-dimensional beams in rectangular coordinates using the radial point interpolation method. |
author |
Fernandes, William Luiz |
author_facet |
Fernandes, William Luiz Barbosa, Gustavo Botelho Rosa, Karine Dornela Silva, Emanuel Fernandes, Walliston dos Santos |
author_role |
author |
author2 |
Barbosa, Gustavo Botelho Rosa, Karine Dornela Silva, Emanuel Fernandes, Walliston dos Santos |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Fernandes, William Luiz Barbosa, Gustavo Botelho Rosa, Karine Dornela Silva, Emanuel Fernandes, Walliston dos Santos |
dc.subject.por.fl_str_mv |
Saint-Venant’s principle Stress analysis |
topic |
Saint-Venant’s principle Stress analysis |
description |
The three-dimensional Theory of Elasticity equations lead to a complex solution for most problems in engineering. Therefore, the solutions are typically developed for reduced systems, usually symmetrical or two-dimensional. In this context, compu- tational resources allow the reduction of these simplifications. The most recognized methods of algebraic approximation of the differential equations are the Finite Differ- ences Method and the Finite Element Method (FEM). However, they have limitations in mesh generation and/or adaptation. As follows, Meshless Methods appear as an al- ternative to these options. The present work uses the Radial Point Interpolation Meth- od (RPIM) to evaluate the stress in two-dimensional beams in regions close to loading (Saint Venant’s Principle). Formulations based on the Fourier Series Theory and the RPIM are presented. Multiquadrics Radial Basis Functions were used to obtain the stiffness matrix. Two numerical examples demonstrate the validity of the RPIM for the proposed theme. The results were obtained from the formulations cited and the Finite Element Method for comparison. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 2022-09-29T19:25:31Z 2022-09-29T19:25:31Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
FERNANDES, W. L. et al. Two-dimensional beams in rectangular coordinates using the radial point interpolation method. REM - International Engineering Journal, Ouro Preto, v. 73, p. 9-16, jan./mar. 2020. Disponível em: <https://www.scielo.br/j/remi/a/VST96kr8VQB7xpynGRzWRBj/?lang=en>. Acesso em: 29 abr. 2022. 2448-167X http://www.repositorio.ufop.br/jspui/handle/123456789/15555 https://doi.org/10.1590/0370-44672018730115 |
identifier_str_mv |
FERNANDES, W. L. et al. Two-dimensional beams in rectangular coordinates using the radial point interpolation method. REM - International Engineering Journal, Ouro Preto, v. 73, p. 9-16, jan./mar. 2020. Disponível em: <https://www.scielo.br/j/remi/a/VST96kr8VQB7xpynGRzWRBj/?lang=en>. Acesso em: 29 abr. 2022. 2448-167X |
url |
http://www.repositorio.ufop.br/jspui/handle/123456789/15555 https://doi.org/10.1590/0370-44672018730115 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFOP instname:Universidade Federal de Ouro Preto (UFOP) instacron:UFOP |
instname_str |
Universidade Federal de Ouro Preto (UFOP) |
instacron_str |
UFOP |
institution |
UFOP |
reponame_str |
Repositório Institucional da UFOP |
collection |
Repositório Institucional da UFOP |
repository.name.fl_str_mv |
Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP) |
repository.mail.fl_str_mv |
repositorio@ufop.edu.br |
_version_ |
1813002802151030784 |