Two-dimensional beams in rectangular coordinates using the radial point interpolation method.

Detalhes bibliográficos
Autor(a) principal: Fernandes, William Luiz
Data de Publicação: 2020
Outros Autores: Barbosa, Gustavo Botelho, Rosa, Karine Dornela, Silva, Emanuel, Fernandes, Walliston dos Santos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFOP
Texto Completo: http://www.repositorio.ufop.br/jspui/handle/123456789/15555
https://doi.org/10.1590/0370-44672018730115
Resumo: The three-dimensional Theory of Elasticity equations lead to a complex solution for most problems in engineering. Therefore, the solutions are typically developed for reduced systems, usually symmetrical or two-dimensional. In this context, compu- tational resources allow the reduction of these simplifications. The most recognized methods of algebraic approximation of the differential equations are the Finite Differ- ences Method and the Finite Element Method (FEM). However, they have limitations in mesh generation and/or adaptation. As follows, Meshless Methods appear as an al- ternative to these options. The present work uses the Radial Point Interpolation Meth- od (RPIM) to evaluate the stress in two-dimensional beams in regions close to loading (Saint Venant’s Principle). Formulations based on the Fourier Series Theory and the RPIM are presented. Multiquadrics Radial Basis Functions were used to obtain the stiffness matrix. Two numerical examples demonstrate the validity of the RPIM for the proposed theme. The results were obtained from the formulations cited and the Finite Element Method for comparison.
id UFOP_8f59b7e9f8f31337193e56037a5a80e9
oai_identifier_str oai:repositorio.ufop.br:123456789/15555
network_acronym_str UFOP
network_name_str Repositório Institucional da UFOP
repository_id_str 3233
spelling Two-dimensional beams in rectangular coordinates using the radial point interpolation method.Saint-Venant’s principleStress analysisThe three-dimensional Theory of Elasticity equations lead to a complex solution for most problems in engineering. Therefore, the solutions are typically developed for reduced systems, usually symmetrical or two-dimensional. In this context, compu- tational resources allow the reduction of these simplifications. The most recognized methods of algebraic approximation of the differential equations are the Finite Differ- ences Method and the Finite Element Method (FEM). However, they have limitations in mesh generation and/or adaptation. As follows, Meshless Methods appear as an al- ternative to these options. The present work uses the Radial Point Interpolation Meth- od (RPIM) to evaluate the stress in two-dimensional beams in regions close to loading (Saint Venant’s Principle). Formulations based on the Fourier Series Theory and the RPIM are presented. Multiquadrics Radial Basis Functions were used to obtain the stiffness matrix. Two numerical examples demonstrate the validity of the RPIM for the proposed theme. The results were obtained from the formulations cited and the Finite Element Method for comparison.2022-09-29T19:25:31Z2022-09-29T19:25:31Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfFERNANDES, W. L. et al. Two-dimensional beams in rectangular coordinates using the radial point interpolation method. REM - International Engineering Journal, Ouro Preto, v. 73, p. 9-16, jan./mar. 2020. Disponível em: <https://www.scielo.br/j/remi/a/VST96kr8VQB7xpynGRzWRBj/?lang=en>. Acesso em: 29 abr. 2022.2448-167Xhttp://www.repositorio.ufop.br/jspui/handle/123456789/15555https://doi.org/10.1590/0370-44672018730115All content of the journal, except where identified, is licensed under a Creative Commons attribution-type BY. Fonte: o PDF do artigo.info:eu-repo/semantics/openAccessFernandes, William LuizBarbosa, Gustavo BotelhoRosa, Karine DornelaSilva, EmanuelFernandes, Walliston dos Santosengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2022-09-29T19:25:43Zoai:repositorio.ufop.br:123456789/15555Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332022-09-29T19:25:43Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false
dc.title.none.fl_str_mv Two-dimensional beams in rectangular coordinates using the radial point interpolation method.
title Two-dimensional beams in rectangular coordinates using the radial point interpolation method.
spellingShingle Two-dimensional beams in rectangular coordinates using the radial point interpolation method.
Fernandes, William Luiz
Saint-Venant’s principle
Stress analysis
title_short Two-dimensional beams in rectangular coordinates using the radial point interpolation method.
title_full Two-dimensional beams in rectangular coordinates using the radial point interpolation method.
title_fullStr Two-dimensional beams in rectangular coordinates using the radial point interpolation method.
title_full_unstemmed Two-dimensional beams in rectangular coordinates using the radial point interpolation method.
title_sort Two-dimensional beams in rectangular coordinates using the radial point interpolation method.
author Fernandes, William Luiz
author_facet Fernandes, William Luiz
Barbosa, Gustavo Botelho
Rosa, Karine Dornela
Silva, Emanuel
Fernandes, Walliston dos Santos
author_role author
author2 Barbosa, Gustavo Botelho
Rosa, Karine Dornela
Silva, Emanuel
Fernandes, Walliston dos Santos
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Fernandes, William Luiz
Barbosa, Gustavo Botelho
Rosa, Karine Dornela
Silva, Emanuel
Fernandes, Walliston dos Santos
dc.subject.por.fl_str_mv Saint-Venant’s principle
Stress analysis
topic Saint-Venant’s principle
Stress analysis
description The three-dimensional Theory of Elasticity equations lead to a complex solution for most problems in engineering. Therefore, the solutions are typically developed for reduced systems, usually symmetrical or two-dimensional. In this context, compu- tational resources allow the reduction of these simplifications. The most recognized methods of algebraic approximation of the differential equations are the Finite Differ- ences Method and the Finite Element Method (FEM). However, they have limitations in mesh generation and/or adaptation. As follows, Meshless Methods appear as an al- ternative to these options. The present work uses the Radial Point Interpolation Meth- od (RPIM) to evaluate the stress in two-dimensional beams in regions close to loading (Saint Venant’s Principle). Formulations based on the Fourier Series Theory and the RPIM are presented. Multiquadrics Radial Basis Functions were used to obtain the stiffness matrix. Two numerical examples demonstrate the validity of the RPIM for the proposed theme. The results were obtained from the formulations cited and the Finite Element Method for comparison.
publishDate 2020
dc.date.none.fl_str_mv 2020
2022-09-29T19:25:31Z
2022-09-29T19:25:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv FERNANDES, W. L. et al. Two-dimensional beams in rectangular coordinates using the radial point interpolation method. REM - International Engineering Journal, Ouro Preto, v. 73, p. 9-16, jan./mar. 2020. Disponível em: <https://www.scielo.br/j/remi/a/VST96kr8VQB7xpynGRzWRBj/?lang=en>. Acesso em: 29 abr. 2022.
2448-167X
http://www.repositorio.ufop.br/jspui/handle/123456789/15555
https://doi.org/10.1590/0370-44672018730115
identifier_str_mv FERNANDES, W. L. et al. Two-dimensional beams in rectangular coordinates using the radial point interpolation method. REM - International Engineering Journal, Ouro Preto, v. 73, p. 9-16, jan./mar. 2020. Disponível em: <https://www.scielo.br/j/remi/a/VST96kr8VQB7xpynGRzWRBj/?lang=en>. Acesso em: 29 abr. 2022.
2448-167X
url http://www.repositorio.ufop.br/jspui/handle/123456789/15555
https://doi.org/10.1590/0370-44672018730115
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFOP
instname:Universidade Federal de Ouro Preto (UFOP)
instacron:UFOP
instname_str Universidade Federal de Ouro Preto (UFOP)
instacron_str UFOP
institution UFOP
reponame_str Repositório Institucional da UFOP
collection Repositório Institucional da UFOP
repository.name.fl_str_mv Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)
repository.mail.fl_str_mv repositorio@ufop.edu.br
_version_ 1813002802151030784