An integer programming approach to the multimode resource-constrained multiproject scheduling problem.

Detalhes bibliográficos
Autor(a) principal: Toffolo, Túlio Ângelo Machado
Data de Publicação: 2016
Outros Autores: Santos, Haroldo Gambini, Carvalho, Marco Antonio Moreira de, Soares, Janniele Aparecida
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFOP
Texto Completo: http://www.repositorio.ufop.br/handle/123456789/7169
http://download.springer.com/static/pdf/549/art%253A10.1007%252Fs10951-015-0422-4.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs10951-015-0422-4&token2=exp=1484912014~acl=%2Fstatic%2Fpdf%2F549%2Fart%25253A10.1007%25252Fs10951-015-0422-4.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs10951-015-0422-4*~hmac=6af17dc04a689c25c355b7d8e2f8bb745ff2050e1ae15aae5f2704fa34286a23
Resumo: The project scheduling problem (PSP) is the subject of several studies in computer science, mathematics, and operations research because of the hardness of solving it and its practical importance. This work tackles an extended version of the problem known as the multimode resourceconstrained multiproject scheduling problem. A solution to this problem consists of a schedule of jobs from various projects, so that the job allocations do not exceed the stipulated limits of renewable and nonrenewable resources. To accomplish this, a set of execution modes for the jobs must be chosen, as the jobs’ duration and amount of needed resources vary depending on the mode selected. Finally, the schedule must also consider precedence constraints between jobs. This work proposes heuristic methods based on integer programming to solve the PSP considered in the Multidisciplinary International Scheduling Conference: Theory and Applications (MISTA) 2013 Challenge. The developed solver was ranked third in the competition, being able to find feasible and competitive solutions for all instances and improving best known solutions for some problems.
id UFOP_a6a3c6f158ab8c9970edefeb7d673240
oai_identifier_str oai:repositorio.ufop.br:123456789/7169
network_acronym_str UFOP
network_name_str Repositório Institucional da UFOP
repository_id_str 3233
spelling An integer programming approach to the multimode resource-constrained multiproject scheduling problem.MatheuristicsMultidisciplinary International Scheduling Conference: Theory and Applications - MISTA - 2013 ChallengeThe project scheduling problem (PSP) is the subject of several studies in computer science, mathematics, and operations research because of the hardness of solving it and its practical importance. This work tackles an extended version of the problem known as the multimode resourceconstrained multiproject scheduling problem. A solution to this problem consists of a schedule of jobs from various projects, so that the job allocations do not exceed the stipulated limits of renewable and nonrenewable resources. To accomplish this, a set of execution modes for the jobs must be chosen, as the jobs’ duration and amount of needed resources vary depending on the mode selected. Finally, the schedule must also consider precedence constraints between jobs. This work proposes heuristic methods based on integer programming to solve the PSP considered in the Multidisciplinary International Scheduling Conference: Theory and Applications (MISTA) 2013 Challenge. The developed solver was ranked third in the competition, being able to find feasible and competitive solutions for all instances and improving best known solutions for some problems.2017-02-01T12:49:23Z2017-02-01T12:49:23Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfTOFFOLO, T. A. M. et al. An integer programming approach to the multimode resource-constrained multiproject scheduling problem. Journal of Scheduling, v. 19, n. 5, p. 295-307, 2016. Disponível em: <http://download.springer.com/static/pdf/549/art%253A10.1007%252Fs10951-015-0422-4.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs10951-015-0422-4&token2=exp=1484912014~acl=%2Fstatic%2Fpdf%2F549%2Fart%25253A10.1007%25252Fs10951-015-0422-4.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs10951-015-0422-4*~hmac=6af17dc04a689c25c355b7d8e2f8bb745ff2050e1ae15aae5f2704fa34286a23>. Acesso em: 20 jan. 2017.10991425http://www.repositorio.ufop.br/handle/123456789/7169http://download.springer.com/static/pdf/549/art%253A10.1007%252Fs10951-015-0422-4.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs10951-015-0422-4&token2=exp=1484912014~acl=%2Fstatic%2Fpdf%2F549%2Fart%25253A10.1007%25252Fs10951-015-0422-4.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs10951-015-0422-4*~hmac=6af17dc04a689c25c355b7d8e2f8bb745ff2050e1ae15aae5f2704fa34286a23Toffolo, Túlio Ângelo MachadoSantos, Haroldo GambiniCarvalho, Marco Antonio Moreira deSoares, Janniele Aparecidainfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2017-02-01T12:49:23Zoai:repositorio.ufop.br:123456789/7169Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332017-02-01T12:49:23Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false
dc.title.none.fl_str_mv An integer programming approach to the multimode resource-constrained multiproject scheduling problem.
title An integer programming approach to the multimode resource-constrained multiproject scheduling problem.
spellingShingle An integer programming approach to the multimode resource-constrained multiproject scheduling problem.
Toffolo, Túlio Ângelo Machado
Matheuristics
Multidisciplinary International Scheduling Conference: Theory and Applications - MISTA - 2013 Challenge
title_short An integer programming approach to the multimode resource-constrained multiproject scheduling problem.
title_full An integer programming approach to the multimode resource-constrained multiproject scheduling problem.
title_fullStr An integer programming approach to the multimode resource-constrained multiproject scheduling problem.
title_full_unstemmed An integer programming approach to the multimode resource-constrained multiproject scheduling problem.
title_sort An integer programming approach to the multimode resource-constrained multiproject scheduling problem.
author Toffolo, Túlio Ângelo Machado
author_facet Toffolo, Túlio Ângelo Machado
Santos, Haroldo Gambini
Carvalho, Marco Antonio Moreira de
Soares, Janniele Aparecida
author_role author
author2 Santos, Haroldo Gambini
Carvalho, Marco Antonio Moreira de
Soares, Janniele Aparecida
author2_role author
author
author
dc.contributor.author.fl_str_mv Toffolo, Túlio Ângelo Machado
Santos, Haroldo Gambini
Carvalho, Marco Antonio Moreira de
Soares, Janniele Aparecida
dc.subject.por.fl_str_mv Matheuristics
Multidisciplinary International Scheduling Conference: Theory and Applications - MISTA - 2013 Challenge
topic Matheuristics
Multidisciplinary International Scheduling Conference: Theory and Applications - MISTA - 2013 Challenge
description The project scheduling problem (PSP) is the subject of several studies in computer science, mathematics, and operations research because of the hardness of solving it and its practical importance. This work tackles an extended version of the problem known as the multimode resourceconstrained multiproject scheduling problem. A solution to this problem consists of a schedule of jobs from various projects, so that the job allocations do not exceed the stipulated limits of renewable and nonrenewable resources. To accomplish this, a set of execution modes for the jobs must be chosen, as the jobs’ duration and amount of needed resources vary depending on the mode selected. Finally, the schedule must also consider precedence constraints between jobs. This work proposes heuristic methods based on integer programming to solve the PSP considered in the Multidisciplinary International Scheduling Conference: Theory and Applications (MISTA) 2013 Challenge. The developed solver was ranked third in the competition, being able to find feasible and competitive solutions for all instances and improving best known solutions for some problems.
publishDate 2016
dc.date.none.fl_str_mv 2016
2017-02-01T12:49:23Z
2017-02-01T12:49:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv TOFFOLO, T. A. M. et al. An integer programming approach to the multimode resource-constrained multiproject scheduling problem. Journal of Scheduling, v. 19, n. 5, p. 295-307, 2016. Disponível em: <http://download.springer.com/static/pdf/549/art%253A10.1007%252Fs10951-015-0422-4.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs10951-015-0422-4&token2=exp=1484912014~acl=%2Fstatic%2Fpdf%2F549%2Fart%25253A10.1007%25252Fs10951-015-0422-4.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs10951-015-0422-4*~hmac=6af17dc04a689c25c355b7d8e2f8bb745ff2050e1ae15aae5f2704fa34286a23>. Acesso em: 20 jan. 2017.
10991425
http://www.repositorio.ufop.br/handle/123456789/7169
http://download.springer.com/static/pdf/549/art%253A10.1007%252Fs10951-015-0422-4.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs10951-015-0422-4&token2=exp=1484912014~acl=%2Fstatic%2Fpdf%2F549%2Fart%25253A10.1007%25252Fs10951-015-0422-4.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs10951-015-0422-4*~hmac=6af17dc04a689c25c355b7d8e2f8bb745ff2050e1ae15aae5f2704fa34286a23
identifier_str_mv TOFFOLO, T. A. M. et al. An integer programming approach to the multimode resource-constrained multiproject scheduling problem. Journal of Scheduling, v. 19, n. 5, p. 295-307, 2016. Disponível em: <http://download.springer.com/static/pdf/549/art%253A10.1007%252Fs10951-015-0422-4.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs10951-015-0422-4&token2=exp=1484912014~acl=%2Fstatic%2Fpdf%2F549%2Fart%25253A10.1007%25252Fs10951-015-0422-4.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs10951-015-0422-4*~hmac=6af17dc04a689c25c355b7d8e2f8bb745ff2050e1ae15aae5f2704fa34286a23>. Acesso em: 20 jan. 2017.
10991425
url http://www.repositorio.ufop.br/handle/123456789/7169
http://download.springer.com/static/pdf/549/art%253A10.1007%252Fs10951-015-0422-4.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs10951-015-0422-4&token2=exp=1484912014~acl=%2Fstatic%2Fpdf%2F549%2Fart%25253A10.1007%25252Fs10951-015-0422-4.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs10951-015-0422-4*~hmac=6af17dc04a689c25c355b7d8e2f8bb745ff2050e1ae15aae5f2704fa34286a23
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFOP
instname:Universidade Federal de Ouro Preto (UFOP)
instacron:UFOP
instname_str Universidade Federal de Ouro Preto (UFOP)
instacron_str UFOP
institution UFOP
reponame_str Repositório Institucional da UFOP
collection Repositório Institucional da UFOP
repository.name.fl_str_mv Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)
repository.mail.fl_str_mv repositorio@ufop.edu.br
_version_ 1813002832776790016