A novel hybrid feature selection algorithm for hierarchical classification.

Detalhes bibliográficos
Autor(a) principal: Lima, Helen de Cássia Sousa da Costa
Data de Publicação: 2021
Outros Autores: Otero, Fernando Esteban Barril, Merschmann, Luiz Henrique de Campos, Souza, Marcone Jamilson Freitas
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFOP
Texto Completo: http://www.repositorio.ufop.br/jspui/handle/123456789/15458
https://doi.org/10.1109/ACCESS.2021.3112396
Resumo: Feature selection is a widespread preprocessing step in the data mining field. One of its purposes is to reduce the number of original dataset features to improve a predictive model’s performance. Despite the benefits of feature selection for the classification task, to the best of our knowledge, few studies in the literature address feature selection for the hierarchical classification context. This paper proposes a novel feature selection method based on the general variable neighborhood search metaheuristic, combining a filter and a wrapper step, wherein a global model hierarchical classifier evaluates feature subsets. We used twelve datasets from the proteins and images domains to perform computational experiments to validate the effect of the proposed algorithm on classification performance when using two global hierarchical classifiers proposed in the literature. Statistical tests showed that using our method for feature selection led to predictive performances that were consistently better than or equivalent to that obtained by using all features with the benefit of reducing the number of features needed, which justifies its efficiency for the hierarchical classification scenario.
id UFOP_b739854d16450a533a124402097478ee
oai_identifier_str oai:repositorio.ufop.br:123456789/15458
network_acronym_str UFOP
network_name_str Repositório Institucional da UFOP
repository_id_str 3233
spelling A novel hybrid feature selection algorithm for hierarchical classification.Hierarchical single-label classificationVariable neighborhood searchFilterWrapperFeature selection is a widespread preprocessing step in the data mining field. One of its purposes is to reduce the number of original dataset features to improve a predictive model’s performance. Despite the benefits of feature selection for the classification task, to the best of our knowledge, few studies in the literature address feature selection for the hierarchical classification context. This paper proposes a novel feature selection method based on the general variable neighborhood search metaheuristic, combining a filter and a wrapper step, wherein a global model hierarchical classifier evaluates feature subsets. We used twelve datasets from the proteins and images domains to perform computational experiments to validate the effect of the proposed algorithm on classification performance when using two global hierarchical classifiers proposed in the literature. Statistical tests showed that using our method for feature selection led to predictive performances that were consistently better than or equivalent to that obtained by using all features with the benefit of reducing the number of features needed, which justifies its efficiency for the hierarchical classification scenario.2022-09-21T20:12:12Z2022-09-21T20:12:12Z2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfLIMA, H. C. S. da C. et al. A novel hybrid feature selection algorithm for hierarchical classification. IEEE Access, v. 9, p. 127278-127292, 2021. Disponível em: <https://ieeexplore.ieee.org/document/9536739>. Acesso em: 29 abr. 2022.2169-3536http://www.repositorio.ufop.br/jspui/handle/123456789/15458https://doi.org/10.1109/ACCESS.2021.3112396This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/. Fonte: o PDF do artigo.info:eu-repo/semantics/openAccessLima, Helen de Cássia Sousa da CostaOtero, Fernando Esteban BarrilMerschmann, Luiz Henrique de CamposSouza, Marcone Jamilson Freitasengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2022-09-21T20:12:20Zoai:repositorio.ufop.br:123456789/15458Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332022-09-21T20:12:20Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false
dc.title.none.fl_str_mv A novel hybrid feature selection algorithm for hierarchical classification.
title A novel hybrid feature selection algorithm for hierarchical classification.
spellingShingle A novel hybrid feature selection algorithm for hierarchical classification.
Lima, Helen de Cássia Sousa da Costa
Hierarchical single-label classification
Variable neighborhood search
Filter
Wrapper
title_short A novel hybrid feature selection algorithm for hierarchical classification.
title_full A novel hybrid feature selection algorithm for hierarchical classification.
title_fullStr A novel hybrid feature selection algorithm for hierarchical classification.
title_full_unstemmed A novel hybrid feature selection algorithm for hierarchical classification.
title_sort A novel hybrid feature selection algorithm for hierarchical classification.
author Lima, Helen de Cássia Sousa da Costa
author_facet Lima, Helen de Cássia Sousa da Costa
Otero, Fernando Esteban Barril
Merschmann, Luiz Henrique de Campos
Souza, Marcone Jamilson Freitas
author_role author
author2 Otero, Fernando Esteban Barril
Merschmann, Luiz Henrique de Campos
Souza, Marcone Jamilson Freitas
author2_role author
author
author
dc.contributor.author.fl_str_mv Lima, Helen de Cássia Sousa da Costa
Otero, Fernando Esteban Barril
Merschmann, Luiz Henrique de Campos
Souza, Marcone Jamilson Freitas
dc.subject.por.fl_str_mv Hierarchical single-label classification
Variable neighborhood search
Filter
Wrapper
topic Hierarchical single-label classification
Variable neighborhood search
Filter
Wrapper
description Feature selection is a widespread preprocessing step in the data mining field. One of its purposes is to reduce the number of original dataset features to improve a predictive model’s performance. Despite the benefits of feature selection for the classification task, to the best of our knowledge, few studies in the literature address feature selection for the hierarchical classification context. This paper proposes a novel feature selection method based on the general variable neighborhood search metaheuristic, combining a filter and a wrapper step, wherein a global model hierarchical classifier evaluates feature subsets. We used twelve datasets from the proteins and images domains to perform computational experiments to validate the effect of the proposed algorithm on classification performance when using two global hierarchical classifiers proposed in the literature. Statistical tests showed that using our method for feature selection led to predictive performances that were consistently better than or equivalent to that obtained by using all features with the benefit of reducing the number of features needed, which justifies its efficiency for the hierarchical classification scenario.
publishDate 2021
dc.date.none.fl_str_mv 2021
2022-09-21T20:12:12Z
2022-09-21T20:12:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv LIMA, H. C. S. da C. et al. A novel hybrid feature selection algorithm for hierarchical classification. IEEE Access, v. 9, p. 127278-127292, 2021. Disponível em: <https://ieeexplore.ieee.org/document/9536739>. Acesso em: 29 abr. 2022.
2169-3536
http://www.repositorio.ufop.br/jspui/handle/123456789/15458
https://doi.org/10.1109/ACCESS.2021.3112396
identifier_str_mv LIMA, H. C. S. da C. et al. A novel hybrid feature selection algorithm for hierarchical classification. IEEE Access, v. 9, p. 127278-127292, 2021. Disponível em: <https://ieeexplore.ieee.org/document/9536739>. Acesso em: 29 abr. 2022.
2169-3536
url http://www.repositorio.ufop.br/jspui/handle/123456789/15458
https://doi.org/10.1109/ACCESS.2021.3112396
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFOP
instname:Universidade Federal de Ouro Preto (UFOP)
instacron:UFOP
instname_str Universidade Federal de Ouro Preto (UFOP)
instacron_str UFOP
institution UFOP
reponame_str Repositório Institucional da UFOP
collection Repositório Institucional da UFOP
repository.name.fl_str_mv Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)
repository.mail.fl_str_mv repositorio@ufop.edu.br
_version_ 1813002847195758592