Deep learning approach at the edge to detect iron ore type.

Detalhes bibliográficos
Autor(a) principal: Klippel, Emerson
Data de Publicação: 2022
Outros Autores: Bianchi, Andrea Gomes Campos, Silva, Saul Emanuel Delabrida, Silva, Mateus Coelho, Garrocho, Charles Tim Batista, Moreira, Vinicius da Silva, Oliveira, Ricardo Augusto Rabelo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFOP
Texto Completo: http://www.repositorio.ufop.br/jspui/handle/123456789/15658
https://doi.org/10.3390/s22010169
Resumo: There is a constant risk of iron ore collapsing during its transfer between processing stages in beneficiation plants. Existing instrumentation is not only expensive but also complex and challenging to maintain. In this research, we propose using edge artificial intelligence for early detection of landslide risk based on images of iron ore transported on conveyor belts. During this work, we defined the device edge and the deep neural network model. Then, we built a prototype will to collect images that will be used for training the model. This model will be compressed for use in the device edge. This same prototype will be used for field tests of the model under operational conditions. In building the prototype, a real-time clock was used to ensure the synchronization of image records with the plant’s process information, ensuring the correct classification of images by the process specialist. The results obtained in the field tests of the prototype with an accuracy of 91% and a recall of 96% indicate the feasibility of using deep learning at the edge to detect the type of iron ore and prevent its risk of avalanche.
id UFOP_c2cca335f7e05be83be1194cf3d50d89
oai_identifier_str oai:repositorio.ufop.br:123456789/15658
network_acronym_str UFOP
network_name_str Repositório Institucional da UFOP
repository_id_str 3233
spelling Deep learning approach at the edge to detect iron ore type.Edge AIIron ore qualityThere is a constant risk of iron ore collapsing during its transfer between processing stages in beneficiation plants. Existing instrumentation is not only expensive but also complex and challenging to maintain. In this research, we propose using edge artificial intelligence for early detection of landslide risk based on images of iron ore transported on conveyor belts. During this work, we defined the device edge and the deep neural network model. Then, we built a prototype will to collect images that will be used for training the model. This model will be compressed for use in the device edge. This same prototype will be used for field tests of the model under operational conditions. In building the prototype, a real-time clock was used to ensure the synchronization of image records with the plant’s process information, ensuring the correct classification of images by the process specialist. The results obtained in the field tests of the prototype with an accuracy of 91% and a recall of 96% indicate the feasibility of using deep learning at the edge to detect the type of iron ore and prevent its risk of avalanche.2022-10-10T20:33:54Z2022-10-10T20:33:54Z2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfKLIPPEL, E. et al. Deep learning approach at the edge to detect iron ore type. Sensors, v. 22, n. 1, artigo 169, 2022. Disponível em: <https://www.mdpi.com/1424-8220/22/1/169?type=check_update&version=1>. Acesso em: 27 set. 2022.1424-8220http://www.repositorio.ufop.br/jspui/handle/123456789/15658https://doi.org/10.3390/s22010169This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Fonte: o PDF do artigo.info:eu-repo/semantics/openAccessKlippel, EmersonBianchi, Andrea Gomes CamposSilva, Saul Emanuel DelabridaSilva, Mateus CoelhoGarrocho, Charles Tim BatistaMoreira, Vinicius da SilvaOliveira, Ricardo Augusto Rabeloengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2022-10-10T20:34:01Zoai:repositorio.ufop.br:123456789/15658Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332022-10-10T20:34:01Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false
dc.title.none.fl_str_mv Deep learning approach at the edge to detect iron ore type.
title Deep learning approach at the edge to detect iron ore type.
spellingShingle Deep learning approach at the edge to detect iron ore type.
Klippel, Emerson
Edge AI
Iron ore quality
title_short Deep learning approach at the edge to detect iron ore type.
title_full Deep learning approach at the edge to detect iron ore type.
title_fullStr Deep learning approach at the edge to detect iron ore type.
title_full_unstemmed Deep learning approach at the edge to detect iron ore type.
title_sort Deep learning approach at the edge to detect iron ore type.
author Klippel, Emerson
author_facet Klippel, Emerson
Bianchi, Andrea Gomes Campos
Silva, Saul Emanuel Delabrida
Silva, Mateus Coelho
Garrocho, Charles Tim Batista
Moreira, Vinicius da Silva
Oliveira, Ricardo Augusto Rabelo
author_role author
author2 Bianchi, Andrea Gomes Campos
Silva, Saul Emanuel Delabrida
Silva, Mateus Coelho
Garrocho, Charles Tim Batista
Moreira, Vinicius da Silva
Oliveira, Ricardo Augusto Rabelo
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Klippel, Emerson
Bianchi, Andrea Gomes Campos
Silva, Saul Emanuel Delabrida
Silva, Mateus Coelho
Garrocho, Charles Tim Batista
Moreira, Vinicius da Silva
Oliveira, Ricardo Augusto Rabelo
dc.subject.por.fl_str_mv Edge AI
Iron ore quality
topic Edge AI
Iron ore quality
description There is a constant risk of iron ore collapsing during its transfer between processing stages in beneficiation plants. Existing instrumentation is not only expensive but also complex and challenging to maintain. In this research, we propose using edge artificial intelligence for early detection of landslide risk based on images of iron ore transported on conveyor belts. During this work, we defined the device edge and the deep neural network model. Then, we built a prototype will to collect images that will be used for training the model. This model will be compressed for use in the device edge. This same prototype will be used for field tests of the model under operational conditions. In building the prototype, a real-time clock was used to ensure the synchronization of image records with the plant’s process information, ensuring the correct classification of images by the process specialist. The results obtained in the field tests of the prototype with an accuracy of 91% and a recall of 96% indicate the feasibility of using deep learning at the edge to detect the type of iron ore and prevent its risk of avalanche.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-10T20:33:54Z
2022-10-10T20:33:54Z
2022
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv KLIPPEL, E. et al. Deep learning approach at the edge to detect iron ore type. Sensors, v. 22, n. 1, artigo 169, 2022. Disponível em: <https://www.mdpi.com/1424-8220/22/1/169?type=check_update&version=1>. Acesso em: 27 set. 2022.
1424-8220
http://www.repositorio.ufop.br/jspui/handle/123456789/15658
https://doi.org/10.3390/s22010169
identifier_str_mv KLIPPEL, E. et al. Deep learning approach at the edge to detect iron ore type. Sensors, v. 22, n. 1, artigo 169, 2022. Disponível em: <https://www.mdpi.com/1424-8220/22/1/169?type=check_update&version=1>. Acesso em: 27 set. 2022.
1424-8220
url http://www.repositorio.ufop.br/jspui/handle/123456789/15658
https://doi.org/10.3390/s22010169
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFOP
instname:Universidade Federal de Ouro Preto (UFOP)
instacron:UFOP
instname_str Universidade Federal de Ouro Preto (UFOP)
instacron_str UFOP
institution UFOP
reponame_str Repositório Institucional da UFOP
collection Repositório Institucional da UFOP
repository.name.fl_str_mv Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)
repository.mail.fl_str_mv repositorio@ufop.edu.br
_version_ 1813002802213945344