Configuração heterogênea de ensembles de classificadores: investigação em bagging, boosting e multiboosting

Detalhes bibliográficos
Autor(a) principal: Nascimento, Diego Silveira Costa
Data de Publicação: 2009
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UNIFOR
Texto Completo: https://biblioteca.sophia.com.br/terminalri/9575/acervo/detalhe/88503
Resumo: Este trabalho apresenta um estudo quanto à caracterização e avaliação de seis novos algoritmos de comitês de máquinas heterogêneos, sendo estes destinados à resolução de problemas de classificação de padrões. Esses algoritmos são extensões de modelos já encontrados na literatura e que vêm sendo aplicados com sucesso em diferentes domínios de pesquisa. Seguindo duas abordagens, uma evolutiva e outra construtiva, diferentes algoritmos de aprendizado de máquina (indutores) podem ser utilizados para fins de indução dos componentes do ensemble a serem treinados por Bagging, Boosting ou MultiBoosting padrão sobre os dados reamostrados, almejando-se o incremento da diversidade do modelo composto resultante. Como meio de configuração automática dos diferentes tipos de componentes, adota-se um algoritmo genético customizado para a primeira abordagem e uma busca de natureza gulosa para a segunda abordagem. Para fins de validação da proposta, foi conduzido um estudo empírico envolvendo 10 diferentes tipos de indutores e 18 problemas de classificação extraídos do repositório UCI. Os valores de acuidade obtidos via ensembles heterogêneos evolutivos e construtivos são analisados com base naqueles produzidos por modelos de ensembles homogêneos compostos pelos 10 tipos de indutores utilizados, sendo que em grande parte dos casos os resultados evidenciam ganhos de desempenho de ambas as abordagens. Palavras-chave: Aprendizado de máquina, Comitês de máquinas, Bagging, Wagging, Boosting, MultiBoosting, Algoritmo genético.
id UFOR_3488831b45722c265728fcc00b635d51
oai_identifier_str oai::88503
network_acronym_str UFOR
network_name_str Biblioteca Digital de Teses e Dissertações da UNIFOR
repository_id_str
spelling Configuração heterogênea de ensembles de classificadores: investigação em bagging, boosting e multiboostingAprendizado computacionalAlgoritmosEste trabalho apresenta um estudo quanto à caracterização e avaliação de seis novos algoritmos de comitês de máquinas heterogêneos, sendo estes destinados à resolução de problemas de classificação de padrões. Esses algoritmos são extensões de modelos já encontrados na literatura e que vêm sendo aplicados com sucesso em diferentes domínios de pesquisa. Seguindo duas abordagens, uma evolutiva e outra construtiva, diferentes algoritmos de aprendizado de máquina (indutores) podem ser utilizados para fins de indução dos componentes do ensemble a serem treinados por Bagging, Boosting ou MultiBoosting padrão sobre os dados reamostrados, almejando-se o incremento da diversidade do modelo composto resultante. Como meio de configuração automática dos diferentes tipos de componentes, adota-se um algoritmo genético customizado para a primeira abordagem e uma busca de natureza gulosa para a segunda abordagem. Para fins de validação da proposta, foi conduzido um estudo empírico envolvendo 10 diferentes tipos de indutores e 18 problemas de classificação extraídos do repositório UCI. Os valores de acuidade obtidos via ensembles heterogêneos evolutivos e construtivos são analisados com base naqueles produzidos por modelos de ensembles homogêneos compostos pelos 10 tipos de indutores utilizados, sendo que em grande parte dos casos os resultados evidenciam ganhos de desempenho de ambas as abordagens. Palavras-chave: Aprendizado de máquina, Comitês de máquinas, Bagging, Wagging, Boosting, MultiBoosting, Algoritmo genético.This work presents a study on the characterization and evaluation of six new heterogeneous committees machines algorithms, which are aimed at solving problems of pattern classification. These algorithms are extensions of models which are already found in the literature and have been successfully applied in different fields of research. Following two approaches, evolutionary and constructive, different machine learning algorithms (inductors) can be used for induction of components of the ensemble to be trained by standard Bagging, Boosting or MultiBoosting on the resampled data, aiming at the increasing of the diversity of the resulting composite model. As a means of automatic configuration of different types of components, we adopt a customized genetic algorithm for the first approach and greedy search for the second approach. For purposes of validation of the proposal, an empirical study has been conducted involving 10 different types of inductors and 18 classification problems taken from the UCI repository. The acuity values obtained by the evolutionary and constructive heterogeneous ensembles are analyzed based on those produced by models of homogeneous ensembles composed of the 10 types of inductors we have utilized, and the majority of the results evidence a gain in performance from both approaches. Keywords: Machine learning, Committee machines, Bagging, Wagging, Boosting, MultiBoosting, Genetic algorithm.Coelho, Andre Luis VasconcelosCoelho, Andre Luis VasconcelosSantos, Cícero Nogueira dosSantos, Rafael Duarte Coelho dosUniversidade de Fortaleza. Programa de Pós-Graduação em Informática AplicadaNascimento, Diego Silveira Costa2009info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://biblioteca.sophia.com.br/terminalri/9575/acervo/detalhe/88503https://uol.unifor.br/auth-sophia/exibicao/6315Disponibilidade forma física: Existe obra impressa de código : 83632porreponame:Biblioteca Digital de Teses e Dissertações da UNIFORinstname:Universidade de Fortaleza (UNIFOR)instacron:UNIFORinfo:eu-repo/semantics/openAccess2024-01-23T20:50:29Zoai::88503Biblioteca Digital de Teses e Dissertaçõeshttps://www.unifor.br/bdtdONGhttp://dspace.unifor.br/oai/requestbib@unifor.br||bib@unifor.bropendoar:2024-01-23T20:50:29Biblioteca Digital de Teses e Dissertações da UNIFOR - Universidade de Fortaleza (UNIFOR)false
dc.title.none.fl_str_mv Configuração heterogênea de ensembles de classificadores: investigação em bagging, boosting e multiboosting
title Configuração heterogênea de ensembles de classificadores: investigação em bagging, boosting e multiboosting
spellingShingle Configuração heterogênea de ensembles de classificadores: investigação em bagging, boosting e multiboosting
Nascimento, Diego Silveira Costa
Aprendizado computacional
Algoritmos
title_short Configuração heterogênea de ensembles de classificadores: investigação em bagging, boosting e multiboosting
title_full Configuração heterogênea de ensembles de classificadores: investigação em bagging, boosting e multiboosting
title_fullStr Configuração heterogênea de ensembles de classificadores: investigação em bagging, boosting e multiboosting
title_full_unstemmed Configuração heterogênea de ensembles de classificadores: investigação em bagging, boosting e multiboosting
title_sort Configuração heterogênea de ensembles de classificadores: investigação em bagging, boosting e multiboosting
author Nascimento, Diego Silveira Costa
author_facet Nascimento, Diego Silveira Costa
author_role author
dc.contributor.none.fl_str_mv Coelho, Andre Luis Vasconcelos
Coelho, Andre Luis Vasconcelos
Santos, Cícero Nogueira dos
Santos, Rafael Duarte Coelho dos
Universidade de Fortaleza. Programa de Pós-Graduação em Informática Aplicada
dc.contributor.author.fl_str_mv Nascimento, Diego Silveira Costa
dc.subject.por.fl_str_mv Aprendizado computacional
Algoritmos
topic Aprendizado computacional
Algoritmos
description Este trabalho apresenta um estudo quanto à caracterização e avaliação de seis novos algoritmos de comitês de máquinas heterogêneos, sendo estes destinados à resolução de problemas de classificação de padrões. Esses algoritmos são extensões de modelos já encontrados na literatura e que vêm sendo aplicados com sucesso em diferentes domínios de pesquisa. Seguindo duas abordagens, uma evolutiva e outra construtiva, diferentes algoritmos de aprendizado de máquina (indutores) podem ser utilizados para fins de indução dos componentes do ensemble a serem treinados por Bagging, Boosting ou MultiBoosting padrão sobre os dados reamostrados, almejando-se o incremento da diversidade do modelo composto resultante. Como meio de configuração automática dos diferentes tipos de componentes, adota-se um algoritmo genético customizado para a primeira abordagem e uma busca de natureza gulosa para a segunda abordagem. Para fins de validação da proposta, foi conduzido um estudo empírico envolvendo 10 diferentes tipos de indutores e 18 problemas de classificação extraídos do repositório UCI. Os valores de acuidade obtidos via ensembles heterogêneos evolutivos e construtivos são analisados com base naqueles produzidos por modelos de ensembles homogêneos compostos pelos 10 tipos de indutores utilizados, sendo que em grande parte dos casos os resultados evidenciam ganhos de desempenho de ambas as abordagens. Palavras-chave: Aprendizado de máquina, Comitês de máquinas, Bagging, Wagging, Boosting, MultiBoosting, Algoritmo genético.
publishDate 2009
dc.date.none.fl_str_mv 2009
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://biblioteca.sophia.com.br/terminalri/9575/acervo/detalhe/88503
url https://biblioteca.sophia.com.br/terminalri/9575/acervo/detalhe/88503
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://uol.unifor.br/auth-sophia/exibicao/6315
Disponibilidade forma física: Existe obra impressa de código : 83632
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UNIFOR
instname:Universidade de Fortaleza (UNIFOR)
instacron:UNIFOR
instname_str Universidade de Fortaleza (UNIFOR)
instacron_str UNIFOR
institution UNIFOR
reponame_str Biblioteca Digital de Teses e Dissertações da UNIFOR
collection Biblioteca Digital de Teses e Dissertações da UNIFOR
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UNIFOR - Universidade de Fortaleza (UNIFOR)
repository.mail.fl_str_mv bib@unifor.br||bib@unifor.br
_version_ 1815437289144188928